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granular and porous materials
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Ottawa sand Clashach sandstone Mt Gambier limestone

Want accurate geometric and topological characterisation from x-ray micro-CT images
e pore and grain size distributions, structure of immiscible fluid distributions
* adjacencies between elements, network models

Understand how these quantities correlate with physical properties such as
e diffusion, permeability, mechanical response to load.

figures obtained at the ANU micro CT facility



Topology from data?

Challenge: compute topological invariants from finite noisy data
with structure on different length-scales.
— e.g. connected components (clustering)

— Euler characteristic, Betti numbers, homology groups.

Requirements:
— a cell complex
— efficient algorithms

— statistical methods for the analysis of topological invariants

Applications:
— Spherical bead packings and other granular and porous materials
— Glass transition, Materials informatics (for MOFs, etc.)

— Histology image analysis, protein structure, distribution of galaxies in the
universe, dynamical systems/ time series analysis, .....



How to build a complex

Points are X = {x,, X,, X3, ..., X} in (M,d) a metric space

The Rips complex R(X, @) has a k-simplex [a,a,, ..., a ] for a.in X,
if d(a, aj) < 2aforall pairsi,j=0,...,k.

The Cech complex C(X, @) has a k-simplex [a,a,, ..., a,] for a;in X,
when I1 B(a, o) is non-empty.

Cech complex is homotopic to the union of balls so it captures the
geometry of X more accurately, but Rips is simpler to build.

RN\

Xo = U B(x, ) Rips R(X, ) Cech C(X, )



How to build a complex

* If your metric space is R?, R3, or R4, the best geometric complex is the
Alpha Shape, A(X,). [H. Edelsbrunner (1983,1994,1995)].

 A(X o) is a subset of the Delaunay Triangulation.
* Ak-simplex [a,a,, ..., a,]is in A(X,a) if its circumsphere is empty and
circumradius < a.
Xa=UB(x,a)
Alpha Shape A(X,) Delaunay
Voronoi




Simplicial homology

 Kis asimplicial complex.

* The k-th chain group C,(K, G) is the free abelian group with coefficients G,
generated by the oriented k-simplices of K.

 The boundary operator maps each k-simplex onto the sum of the (k-1)-
simplices that are its faces.

8k X Ck — Ck—l 8k_18k =0

* Theimage of Ok is the boundary group, B, ;

 The kernel of O is the cycle group, Z,

3

* The homology groupis H, =2,/ B,

 The structure theorem for finitely generated abelian groups tells us that if
G =Z, (integers) then

HKZ2)=7®.0Z®Z,®..0Z,

P, copies

* [.is the Betti number and t; are the torsion coefficients
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Betti number functions of A(X,a)
are not stable wrt small changes
in point locations.

But persistent homology intervals are.

Cohen-Steiner, Edelsbrunner, Harer (2007)



Fractal examples

b0 is number of
components

bl is number of holes

Problem with counting
holes that do not persist
for smaller radii.




Persistent homology

Llet Xa=UB(x,a) so 2 : Xa— Xb fora<b.
The cell complexes, R(X,a), C(X,a) and A(X,a) also have this inclusion property.
Homology is a functor so i becomes a group homomorphism:
i : Hi(Xa) — Hy(XDb)
The is the image of i*:
Hi(a,b) =i * (H(Xa)) = Zx(Xa)/(Brs1(XD) N Z1(Xa))
[VR Topology Proceedings 1999]

A(X,a) A(X,b)

)




Persistent homology

Algorithmic definition
When adding a single k-simplex, o%, to a cell complex that already contains all
faces of o*exactly one of two changes in topology can happen:

* OXcreates a k-cycle (it is marked +ve)

* o0f“makes a (k-1)-cycle a boundary (it is marked —ve)
[Delfinado and Edelsbrunner, 1993]

A persistent homology class is found by pairing each —ve k-simplex with the
most recently added and as-yet-unpaired +ve (k-1)-simplex in its boundary
class. [Edelsbrunner, Letscher, Zomorodian, DCG 2002].

{1, 2, 3, 4,[12], [34], [24], [13], [23], [123] }




Persistent homology

A more algebraically sophisticated view of persistent homology is given by
G. Carlsson (e.g. AMS Bulletin, 2009).

A filtration is a directed space:

XgC X1 CXo---CX,

The functorial property of homology means the induced maps on
homology groups also form a directed space.

If the coefficient group is a field (e.g. R, or Z,) we can form a graded
module of this homology sequence and an algebraic structure theorem

tells us that N
PH(X) = & I[b;, di]
1=1

This collection of intervals is called the barcode.
If we plot the (b,d) values on 2D axes, it is called the persistence diagram.

The function ,(a,b) = rank H (a,b) is the persistent homology rank
function
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spherical bead packing

Partially crystallized packing, ®=70%
a fully crystallized packing has ©®=74%
(i.e layers of hexagonally close packed spheres)

Disordered packing

(random close pack, maximally jammed)
Bernal limit has vol frac ® = 64%
Well-defined distribution of local volumes

data from M Saadatfaar, ANU x-ray CT of ~150K beads, (1.00 +/- 0.025)mm diameter.



spherical bead packing
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Distributions of Voronoi cell volumes
from packings with different
global volume fractions .

fig from:
Francois, Saadatfar, et al
Phys. Rev. Lett. 111 (2013).

and see earlier work by
Edwards;

Aste;

Anikeenko and Medvedev.



spherical bead packing

A maximally dense packing is built from layers of hexagonally packed spheres
Locally, these give pores related to regular tetrahedra and octahedra

octa(1.15r,1.41r)xN
H2 . tetra (1.15r,1.22r) x 2N
C
H1 — equi tri (r, 1.15r) x 4N
HO

dge (O, N
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Persistence diagrams for a subset (14mm*3) of the
partially crystallised packing with high volume fraction = 72%.
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cycles with
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packing with volume fraction = 63%.

the plots are 2D histograms where colour is log10 of the
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spherical bead packing PD2
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spherical bead packing PD2
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spherical bead packing PD2
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PD2 of partially crystallised packing ¢ =0.70
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tetrahedra
distortion

octahedra
distortion

Saadatfar, Takeuchi, VR, Francois, Hiraoka,
“Pore configuration landscape of granular crystallization,”
Nature Communications, May 2017.



simulation data
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regular tet and oct pores
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summary of sphere packing analysis
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PD2 captures the distribution of local pore

0.075F configurations.

0.070} It has revealed pathways of local deformations
involved in the transition from crystalline to less-

0.065 | dense packings.

0.060 BUT: Granular packing is much more than geometry.
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Saadatfar, Takeuchi, VR, Francois, Hiraoka (2017)
Nature Communications, vol. 8.
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VR, Turner (2016) Physica D vol. 334,



