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granular	
  and	
  porous	
  materials	
  

OMawa	
  sand	
   Clashach	
  sandstone	
  

1mm	
  scale	
  bars	
  

Mt	
  Gambier	
  limestone	
  

Want	
  accurate	
  geometric	
  and	
  topological	
  characterisa2on	
  from	
  x-­‐ray	
  micro-­‐CT	
  images	
  
•  pore	
  and	
  grain	
  size	
  distribu2ons,	
  structure	
  of	
  immiscible	
  fluid	
  distribu2ons	
  
•  adjacencies	
  between	
  elements,	
  network	
  models	
  	
  	
  	
  

Understand	
  how	
  these	
  quan22es	
  correlate	
  with	
  physical	
  proper2es	
  such	
  as	
  
•  diffusion,	
  permeability,	
  mechanical	
  response	
  to	
  load.	
  	
  	
  	
  

figures	
  obtained	
  at	
  the	
  ANU	
  micro	
  CT	
  facility	
  



Topology	
  from	
  data?	
  	
  
•  Challenge:	
  compute	
  topological	
  invariants	
  from	
  finite	
  noisy	
  data	
  

with	
  structure	
  on	
  different	
  length-­‐scales.	
  	
  
–  e.g.	
  connected	
  components	
  (clustering)	
  
–  Euler	
  characteris2c,	
  	
  Be_	
  numbers,	
  homology	
  groups.	
  	
  

•  Requirements:	
  	
  
–  a	
  cell	
  complex	
  
–  efficient	
  algorithms	
  
–  sta2s2cal	
  methods	
  for	
  the	
  analysis	
  of	
  topological	
  invariants	
  

•  Applica2ons:	
  
–  Spherical	
  bead	
  packings	
  and	
  other	
  granular	
  and	
  porous	
  materials	
  	
  
–  Glass	
  transi2on,	
  Materials	
  informa2cs	
  (for	
  MOFs,	
  etc.)	
  	
  	
  
–  Histology	
  image	
  analysis,	
  protein	
  structure,	
  distribu2on	
  of	
  galaxies	
  in	
  the	
  

universe,	
  dynamical	
  systems/	
  2me	
  series	
  analysis,	
  …..	
  



How	
  to	
  build	
  a	
  complex	
  
•  Points	
  are	
  X	
  =	
  {x1,	
  x2,	
  x3,	
  …,	
  xn}	
  in	
  (M,d)	
  a	
  metric	
  space	
  
•  The	
  Rips	
  complex	
  R(X,α)	
  has	
  a	
  k-­‐simplex	
  [a0,a1,	
  …,	
  ak]	
  for	
  ai	
  in	
  X,	
  	
  

	
  if	
  d(ai,	
  aj)	
  <	
  2α	
  for	
  all	
  pairs	
  i,j=	
  0,…,k.	
  	
  
•  The	
  Cech	
  complex	
  C(X,α)	
  has	
  a	
  k-­‐simplex	
  [a0,a1,	
  …,	
  ak]	
  for	
  ai	
  in	
  X,	
  	
  

	
  when	
  Π	
  B(ai,α)	
  is	
  non-­‐empty.	
  

•  Cech	
  complex	
  is	
  homotopic	
  to	
  the	
  union	
  of	
  balls	
  so	
  it	
  captures	
  the	
  	
  
geometry	
  of	
  X	
  more	
  accurately,	
  but	
  Rips	
  is	
  simpler	
  to	
  build.	
  	
  	
  	
  

	
  
	
  

α

Xα	
  =	
  U	
  B(x,α)	
   Rips	
  	
  R(X,α) 	
   Cech	
  C(X,α) 	
  



How	
  to	
  build	
  a	
  complex	
  
•  If	
  your	
  metric	
  space	
  is	
  R2,	
  R3,	
  or	
  R4,	
  the	
  best	
  geometric	
  complex	
  is	
  the	
  

Alpha	
  Shape,	
  A(X,α).	
  	
  	
  	
  [H.	
  Edelsbrunner	
  (1983,1994,1995)].	
  
•  A(X,α)	
  is	
  a	
  subset	
  of	
  the	
  Delaunay	
  Triangula2on.	
  
•  A	
  k-­‐simplex	
  [a0,a1,	
  …,	
  ak]	
  is	
  in	
  A(X,α)	
  if	
  its	
  circumsphere	
  is	
  empty	
  and	
  

circumradius	
  <	
  α.	
  	
  	
  

Alpha	
  Shape	
  A(X,α)
Xα	
  =	
  U	
  B(x,α) 	
  

Delaunay	
  
Voronoi	
  	
  



Simplicial	
  homology	
  
•  K	
  is	
  a	
  simplicial	
  complex.	
  	
  
•  The	
  k-­‐th	
  chain	
  group	
  Ck(K,	
  G)	
  is	
  the	
  free	
  abelian	
  group	
  with	
  coefficients	
  G,	
  

generated	
  by	
  the	
  oriented	
  k-­‐simplices	
  of	
  K.	
  
•  The	
  boundary	
  operator	
  maps	
  each	
  k-­‐simplex	
  onto	
  the	
  sum	
  of	
  the	
  (k-­‐1)-­‐

simplices	
  that	
  are	
  its	
  faces.	
  	
  	
  

•  The	
  image	
  of	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  boundary	
  group,	
  Bk-­‐1	
  
•  The	
  kernel	
  of	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  cycle	
  group,	
  Zk	
  	
  
•  The	
  homology	
  group	
  is	
  Hk	
  =	
  Zk	
  /	
  Bk	
  
•  The	
  structure	
  theorem	
  for	
  finitely	
  generated	
  abelian	
  groups	
  tells	
  us	
  that	
  if	
  

G	
  =	
  Z,	
  (integers)	
  then	
  	
  	
  

•  βk	
  is	
  the	
  Be_	
  number	
  and	
  ti	
  are	
  the	
  torsion	
  coefficients	
  

@k

@k : Ck �! Ck�1 @k�1@k = 0

€ 

Hk (K,Z) = Z ⊕ ...⊕ Z ⊕ Zt1 ⊕ ...⊕ Ztm

βk	
  	
  copies	
  

@k

1	
  

2	
  

3	
  

4	
  



β0=9,	
  	
  β1=0	
   β0=3,	
  	
  β1=2	
   β0=1,	
  	
  β1=2	
  

Be_	
  number	
  func2ons	
  of	
  A(X,α)	
  
are	
  not	
  stable	
  wrt	
  small	
  changes	
  
in	
  point	
  loca2ons.	
  	
  	
  
	
  
But	
  persistent	
  homology	
  intervals	
  are.	
  
	
  
Cohen-­‐Steiner,	
  Edelsbrunner,	
  Harer	
  (2007)	
  
	
  



Fractal	
  examples	
  
b0	
  is	
  number	
  of	
  
components	
  
	
  
b1	
  is	
  number	
  of	
  holes	
  
	
  
Problem	
  with	
  coun2ng	
  
holes	
  that	
  do	
  not	
  persist	
  
for	
  smaller	
  radii.	
  	
  	
  

b1	
  

b1	
  

b0	
  

b0	
  



Persistent	
  homology	
  
Let	
  Xa	
  =	
  U	
  B(x,a)	
  	
  	
  so	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  a	
  <	
  b.	
  	
  	
  
The	
  cell	
  complexes,	
  R(X,a),	
  C(X,a)	
  and	
  A(X,a)	
  also	
  have	
  this	
  inclusion	
  property.	
  	
  
Homology	
  is	
  a	
  functor	
  so	
  i	
  	
  becomes	
  a	
  group	
  homomorphism:	
  	
  	
  
	
  
The	
  persistent	
  homology	
  group	
  is	
  the	
  image	
  of	
  i*	
  :	
  
	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [VR	
  Topology	
  Proceedings	
  1999]	
  

i⇤ : Hk(Xa) ! Hk(Xb)

i : Xa ,! Xb

Hk(a, b) = i ⇤ (Hk(Xa)) = Zk(Xa)/(Bk+1(Xb) \ Zk(Xa))

A(X,a)	
   A(X,b)	
  



Persistent	
  homology	
  
Algorithmic	
  defini2on	
  
When	
  adding	
  a	
  single	
  k-­‐simplex,	
  σk,	
  to	
  a	
  cell	
  complex	
  that	
  already	
  contains	
  all	
  
faces	
  of	
  σk	
  exactly	
  one	
  of	
  two	
  changes	
  in	
  topology	
  can	
  happen:	
  	
  

•  σk	
  creates	
  a	
  k-­‐cycle	
  (it	
  is	
  marked	
  +ve)	
  
•  σk	
  makes	
  a	
  (k-­‐1)-­‐cycle	
  a	
  boundary	
  (it	
  is	
  marked	
  –ve)	
  	
  

[Delfinado	
  and	
  Edelsbrunner,	
  1993]	
  	
  
	
  
A	
  persistent	
  homology	
  class	
  is	
  found	
  by	
  pairing	
  each	
  –ve	
  k-­‐simplex	
  with	
  the	
  
most	
  recently	
  added	
  and	
  as-­‐yet-­‐unpaired	
  +ve	
  (k-­‐1)-­‐simplex	
  in	
  its	
  boundary	
  
class.	
  [Edelsbrunner,	
  Letscher,	
  Zomorodian,	
  DCG	
  2002].	
  	
  
	
  	
  	
  	
  
	
  
	
  {1,	
  2,	
  3,	
  4,	
  [12],	
  [34],	
  [24],	
  [13],	
  [23],	
  [123]	
  }	
  

1	
  

2	
  

3	
  

4	
  



Persistent	
  homology	
  
•  A	
  more	
  algebraically	
  sophis2cated	
  view	
  of	
  persistent	
  homology	
  is	
  given	
  by	
  

G.	
  Carlsson	
  (e.g.	
  AMS	
  Bulle2n,	
  2009).	
  	
  
•  A	
  filtra2on	
  is	
  a	
  directed	
  space:	
  	
  

•  The	
  functorial	
  property	
  of	
  homology	
  means	
  the	
  induced	
  maps	
  on	
  
homology	
  groups	
  also	
  form	
  a	
  directed	
  space.	
  	
  

•  If	
  the	
  coefficient	
  group	
  is	
  a	
  field	
  (e.g.	
  R,	
  or	
  Z2)	
  we	
  can	
  form	
  a	
  graded	
  
module	
  of	
  this	
  homology	
  sequence	
  and	
  an	
  algebraic	
  structure	
  theorem	
  
tells	
  us	
  that	
  

•  This	
  collec2on	
  of	
  intervals	
  is	
  called	
  the	
  barcode.	
  	
  
•  If	
  we	
  plot	
  the	
  (b,d)	
  values	
  on	
  2D	
  axes,	
  it	
  is	
  called	
  the	
  persistence	
  diagram.	
  	
  
•  The	
  func2on	
  βk(a,b)	
  =	
  rank	
  Hk(a,b)	
  is	
  the	
  persistent	
  homology	
  rank	
  

func2on	
  	
  

X0 ⇢ X1 ⇢ X2 · · · ⇢ Xn

PHk(X) =
NM

i=1

I[bi, di]



+	
  

(bi,di)	
  

βi(x,y)	
  =	
  #	
  PDi	
  pts	
  to	
  upper	
  leV	
  of	
  (x,y)	
  
.	
   βi(x)	
  



M. HANIFPOUR et al. PHYSICAL REVIEW E 91, 062202 (2015)

density range [φBernal,φc] [29]. Some crucial features of this
study have recently been observed in 3D realistic packings
(i.e., weakly polydisperse and frictional) by the authors of
the present paper [30]. Here we intend to extend this first
experimental study and draw a more exhaustive picture of the
structure of partially crystallized packings.

In this contribution, we take advantage of a helical x-ray
tomography setup to image 3D packings containing up to
200 000 frictional spheres in both cylindrical and spherical
containers. We employ a simple vibrational protocol to
produce partially crystallized packings. Using state-of-the-art
experimental and numerical techniques, we can study the
evolution of geometrical and mechanical features at the global
and at the grain scale during the disordered-ordered transition.

This paper is organized as follows. Section II describes
the experimental setup and the procedure used to obtain
partially crystallized packings. Section III details the nu-
merical calculations performed on the experimental data in
order to describe the force network with numerical precision
and access the tangential forces. Section IV characterizes
the geometrical transition when the packing density crosses
φBernal = 0.64. Section V focuses on the mechanical features
of the crystallization process in terms of grain contacts and the
evolution of a topological descriptor.

II. EXPERIMENTAL DETAILS

We use monosized acrylic beads (diameter d = 1.00 and
1.62 mm; polydispersity = 0.025 mm), which are packed into
large containers (inner diameter = 66 mm). The beads are
covered with graphite to reduce electrostatic repulsion between
them. Nine packings of beads are prepared in cylindrical and
spherical containers (see details in Table I). Five of them
are produced by simply pouring the beads into the container
following the methods described in [14]. The other four, with a
density φ ≫ φBernal, are generated according to the vibrational
protocol described below.

Our experimental method is based on compaction by
an intense fluidization of the packing [22,31]. A batch of
beads is initially poured into a container forming a random
packing. The container is then placed on a shaker allowing
for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f = 50 Hz; the vertical
component of the acceleration γν is set to be five times

TABLE I. Summary of the experimental packings used in this
study. N is the number of grains used for the analysis, φ is the global
packing density, and D is the grain diameter.

Container N φ D (mm)

1 Cylinder 26498 0.59 1.62
2 Cylinder 25797 0.61 1.62
3 Cylinder 27555 0.60 1.62
4 Cylinder 27665 0.61 1.62
5 Cylinder 156315 0.63 1.00
6 Cylinder 31005 0.66 1.62
7 Cylinder 216722 0.685 1.00
8 Spherical 60205 0.685 1.00
9 Spherical 64042 0.72 1.00

FIG. 1. (Color online) 3D visualization of a partially crystallized
packing containing ≈200 000 beads. Bright regions indicate the
location of disordered aggregates of beads, which have been identified
using the q6 metrics (see Sec. IV).

larger than the horizontal one γh. In these experiments, γν

is constant and set to 2.5g (where g is the gravitational
acceleration). The container is vibrated intensely for 20 s.
The resulting packings show substantial crystallization, with
a global packing density well beyond Bernal’s limit, ranging
from 0.66 to 0.72. The compaction protocol presented here
is robust and allows us to consistently generate partially
crystallized packings irrespective of the packing container.

Figure 1(a) shows a 3D rendering of a partially crystallized
structure. The bright regions correspond to locally disordered
aggregates of beads; a disordered core and the boundaries
between different crystal domains are signified by the bright
regions. Both random and crystalline phases coexist in the
packing, yielding nonuniform packing densities across the
sample. Helical x-ray computed tomography (XCT) is utilized
to digitally access the internal 3D structure of the packings
with a spatial resolution of ≈30 microns [14,22,32–34]. All
our analyses have been carried out over the inner region of
the packings, four sphere diameters away from the container
walls to avoid the boundary effects. These inner regions are
then decomposed into nonoverlapping cubical subsets each
containing 4000 beads. A total of 94 subsets are produced
from all the packings listed in Table I. As a consequence of
structural heterogeneity in our partially crystallized packings
(see Fig. 1), the 4000-bead subsets cover a wide range of
packing densities spanning from φ = 0.58 to φ = 0.73.

III. DEM SIMULATION

The digital representation of each packing is realized using
XCT and a range of postprocessing image analysis techniques.
Each grain in the 3D digital representation (tomogram) is
made of a cluster of ≈19 000 voxels and each tricubic voxel
represents 303 µm of space known as the image resolution. As

062202-2
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Fig. 1. (Left) Volume rendering of ∼ 150; 000 sphere-pack in a cylindrical container. (Right) Same image
with the topological distances from a given central sphere highlighted in colours (online version). Movies
are available at the URL: http://www.rsphysse.anu.edu.au/appmaths/ct movies/

Sphere centres. In order to proceed with the analysis of the geometrical and statisti-
cal properties the position of all sphere centres are calculated from the binary images.
Our approach is to !nd the sphere centres by moving a reference sphere (S) throughout
the binarized sphere pack (P) and measuring the local overlap between S and P. This
corresponds to a three-dimensional convolution: P ∗ S. This method is made highly
e"cient by applying the convolution theorem which allow to transform the convolu-
tion into a product in Fourier space: F[P ∗ S] =F[P]F[S], where F represents the
(fast)Fourier Transform. The algorithm proceeds in 4 steps: (1) fast Fourier transform
of the binary image (F[P]); (2) transform the digitized map of the reference sphere
(F[S], chosen with a diameter about 10% smaller than d); (3) perform the direct prod-
uct between these two; (4) inverse-transform of the product: F−1[F[P]F[S]]=P ∗S.
The result is an intensity map of the overlapping between the reference sphere and
the bead pack, where the voxels closer to the sphere centres have a higher intensity.
A threshold on the intensity map, locates the groups of voxels surrounding the sphere
centres. The centre of mass of these grouped voxels is a very good estimation of the
sphere centres in the pack.
Central region. All the analyses reported hereafter have been performed over a

central region (G) at 4 sphere-diameters away from the sample boundaries. Note that
spheres outside G are considered when computing the neighbouring environment of
spheres in G. The two large samples have about NG ∼ 80; 000 spheres in G, whereas
the four smaller have about NG ∼ 20; 000. In Table 1, the number of spheres in this
region (NG) is reported for each sample.

spherical	
  bead	
  packing	
  

Disordered	
  packing	
  	
  	
  
(random	
  close	
  pack,	
  maximally	
  jammed)	
  
Bernal	
  limit	
  has	
  vol	
  frac	
  Φ =	
  64%	
  
Well-­‐defined	
  distribu2on	
  of	
  local	
  volumes	
  

Par2ally	
  crystallized	
  packing,	
  Φ=70%	
  
a	
  fully	
  crystallized	
  packing	
  has	
  Φ=74%	
  
(i.e	
  layers	
  of	
  hexagonally	
  close	
  packed	
  spheres)	
  

data	
  from	
  M	
  Saadavaar,	
  ANU	
  x-­‐ray	
  CT	
  of	
  ~150K	
  beads,	
  (1.00	
  +/-­‐	
  0.025)mm	
  diameter.	
  



spherical	
  bead	
  packing	
  

which are packed into large cylindrical or spherical con-
tainers (inner diameter ¼ 66 mm). A batch of approxi-
mately 200 000 beads is poured into the container
forming an initial packing in a random configuration with
a volume fraction ! ranging from 57% to 63%. The pack-
ings are then shaken intensely for few seconds, to the point
of fluidization [14], where a fast compaction is observed.
The resulting global packing density ranges from 68.5% up
to 71.5%. The internal structure of these packings is
imaged by means of x-ray computed tomography (see
Refs. [23,24] and the Supplemental Material [25]).
Figure 1(a) shows a tomographic slice of a dense packing
obtained in a spherical geometry. The heterogeneous struc-
ture of the packing is evident with disordered domains
(! " 0:65) coexisting with large and almost perfectly crys-
talline clusters (! " 0:732).We have consistently obtained
such partially crystallized packings, whose statistical and
topological features primarily depend on ! regardless of
the initial jammed configuration or the container geometry.
Our analyses have been carried out on global packings as
well as subsets containing 4000 spheres [26].

To explore how local configurations become denser
during the crystallization, we divide the packing according
to the Voronoi tessellation [inset of Fig. 1(b)]. This grain-
centered partitioning allows us to estimate the probability
distribution function (PDF) of the local volume fluctua-
tions and their statistics: i.e., its variance"2, mean value !V,
and minimal bound Vmin.

Figure 1(b) shows such a PDF for decreasing global
volume fraction. The PDF for disordered packings
(!< 0:64) is asymmetric and corresponds to a gamma
law whose variance decreases with compaction [inset of
Fig. 1(c) and Ref. [27]]. In the density range ! 2
½0:64; 0:68$, although the global volume fraction decreases

( !V decreases), the PDF flattens and its variance increases.
Beyond ! " 0:68, it gets narrower and peaks around
V ¼ 0, 71 mm3, which corresponds to cubo-octahedral
crystalline configurations.
An intensive granular variable kg ¼ ð !V & VminÞ2="2

has recently been suggested as granular material’s equiva-
lent of ‘‘specific heat’’ [27]. kg should therefore be a
measure of structural rearrangements probed over the local
volume fluctuations. This parameter reveals three succes-
sive transitions occurring in our packings at " " 0:64,
0.68, and 0.72, as shown in Fig. 1(c). The sharp drop
observed at " " 0:64 is related to the onset of crystalliza-
tion, which was detected by a bond order parameter
method (see Ref. [28] and the Supplemental Material
[25]). The two subsequent regimes of compaction at higher
densities (!> 0:68) are in contrast with the monotonic
drop of kg reported in numerical simulations [27]. These
transitions might be connected to global transformations of
the growing crystalline clusters [28,29].
To reveal grain rearrangements associated with these

structural transitions, we now describe packings in terms
of the simplices (generalized tetrahedra) of the Delaunay
partition [inset of Fig. 2(a)] [30]. Since Bernal’s work, it is
known that clusters made of quasiregular tetrahedra play a
major role in the structure and compaction of disordered
packings [6,13,19].
These tetrahedral patterns are revealed within the

Delaunay partition through two working hypotheses.
(i) A simplex is considered dense (or quasiregular) if its
longest edge l is smaller than 5=4 of the diameter d of the
beads that compose the simplex. Dense simplices for
which (# ¼ l& d ( 0:25) d) will be called tetrahedra
[6,13]. (ii) In an assembly of tetrahedra, those who share
a face show a greater mechanical stability than tetrahedra
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k
g
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3)
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FIG. 1 (color online). (a) Tomographic slice of a partially crystallized packing (! " 70:5%) in a spherical container. (b) PDF of the
local volume fluctuations for increasing global volume fraction !. The PDF for ! ¼ 0:598 is fitted by a gamma distribution (red line).
Inset: The Voronoi partition of a local configuration of beads. The bead and the surrounding space closest to its center define the
Voronoi elementary brick. (c) The granular ‘‘specific heat’’ kg ¼ ð !V & VminÞ2="2 versus !. Three successive transitions are
highlighted at " ¼ 0:64, 0.68, 0.72. 34 subsets [26] of roughly 4000 beads extracted from six different packings (indicated by
different markers) have been analyzed: two initial jammed packings obtained by pouring þ four partially crystallized packings. Inset:
Variance "2 of the Voronoi volume versus !.
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Distribu2ons	
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Fig. 2.2. (a) – a regular tetrahedron; (b) – a regular quartoctahedron (one edge √2 times loner 
then other ones); (c) – a flat simplex with a shape of a square; (d) – a perfect octahedron. The 
octahedron is divided by infinitesimal perturbations on four quartoctahedra or four quartocta-
hedra and one flat simplex [Vol89].  

regular square “simplex” has two opposite edges that are √2 times longer than the 
other four edges. Similarly to (2) we can write: 

 

 

 

 

 

Thus, a degenerate (square) simplex has K = 0, and at small distortions the value K 
is also small. In order to compute this measure, the edges m and n are selected as a 
pair of the longest opposite edges of a simplex. Note these “virtual” simplexes can be 
important for the analysis of clusters of the Delaunay simplexes, for example for 
studying crystalline nuclei. In this case connectivity of the simplexes is taken into 
account.  Neglecting these simplexes can result in a loss of integrity of slightly dis-
torted octahedral configurations. 

Following the idea of the formula (3), one can define measures to select simplexes 
of other specific shapes. The Delaunay simplex of the body centered cubic lattice 
(BCC) is one of the important simplexes for dense packings.  In this simplex, the two 
opposite edges of the simplex are 2/√3 times longer then the others. 

The proposed measures should be calibrated before their application. A calibration 
of these measures has been done in [Med87, Naber91, Anik_Jap], utilizing models of 
a known structure (slightly distorted FCC crystal). It was proposed to use the value of 
Tb = 0.018 as a boundary to select the class of tetrahedra (simplexes closer to the 
regular tetrahedron),  and  Qb = 0.014 to select the class of quartoctahedra (simplexes 
closer to the regular qurtoctahedron) [Anik_Jap]. These boundary values seem 
reasonable in application to packings of hard spheres as well [Anik2006]. Indeed, the 
value Tb corresponds to a minimum on the T-distribution for crystalline packings of 
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density range [φBernal,φc] [29]. Some crucial features of this
study have recently been observed in 3D realistic packings
(i.e., weakly polydisperse and frictional) by the authors of
the present paper [30]. Here we intend to extend this first
experimental study and draw a more exhaustive picture of the
structure of partially crystallized packings.

In this contribution, we take advantage of a helical x-ray
tomography setup to image 3D packings containing up to
200 000 frictional spheres in both cylindrical and spherical
containers. We employ a simple vibrational protocol to
produce partially crystallized packings. Using state-of-the-art
experimental and numerical techniques, we can study the
evolution of geometrical and mechanical features at the global
and at the grain scale during the disordered-ordered transition.

This paper is organized as follows. Section II describes
the experimental setup and the procedure used to obtain
partially crystallized packings. Section III details the nu-
merical calculations performed on the experimental data in
order to describe the force network with numerical precision
and access the tangential forces. Section IV characterizes
the geometrical transition when the packing density crosses
φBernal = 0.64. Section V focuses on the mechanical features
of the crystallization process in terms of grain contacts and the
evolution of a topological descriptor.

II. EXPERIMENTAL DETAILS

We use monosized acrylic beads (diameter d = 1.00 and
1.62 mm; polydispersity = 0.025 mm), which are packed into
large containers (inner diameter = 66 mm). The beads are
covered with graphite to reduce electrostatic repulsion between
them. Nine packings of beads are prepared in cylindrical and
spherical containers (see details in Table I). Five of them
are produced by simply pouring the beads into the container
following the methods described in [14]. The other four, with a
density φ ≫ φBernal, are generated according to the vibrational
protocol described below.

Our experimental method is based on compaction by
an intense fluidization of the packing [22,31]. A batch of
beads is initially poured into a container forming a random
packing. The container is then placed on a shaker allowing
for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f = 50 Hz; the vertical
component of the acceleration γν is set to be five times

TABLE I. Summary of the experimental packings used in this
study. N is the number of grains used for the analysis, φ is the global
packing density, and D is the grain diameter.

Container N φ D (mm)

1 Cylinder 26498 0.59 1.62
2 Cylinder 25797 0.61 1.62
3 Cylinder 27555 0.60 1.62
4 Cylinder 27665 0.61 1.62
5 Cylinder 156315 0.63 1.00
6 Cylinder 31005 0.66 1.62
7 Cylinder 216722 0.685 1.00
8 Spherical 60205 0.685 1.00
9 Spherical 64042 0.72 1.00

FIG. 1. (Color online) 3D visualization of a partially crystallized
packing containing ≈200 000 beads. Bright regions indicate the
location of disordered aggregates of beads, which have been identified
using the q6 metrics (see Sec. IV).

larger than the horizontal one γh. In these experiments, γν

is constant and set to 2.5g (where g is the gravitational
acceleration). The container is vibrated intensely for 20 s.
The resulting packings show substantial crystallization, with
a global packing density well beyond Bernal’s limit, ranging
from 0.66 to 0.72. The compaction protocol presented here
is robust and allows us to consistently generate partially
crystallized packings irrespective of the packing container.

Figure 1(a) shows a 3D rendering of a partially crystallized
structure. The bright regions correspond to locally disordered
aggregates of beads; a disordered core and the boundaries
between different crystal domains are signified by the bright
regions. Both random and crystalline phases coexist in the
packing, yielding nonuniform packing densities across the
sample. Helical x-ray computed tomography (XCT) is utilized
to digitally access the internal 3D structure of the packings
with a spatial resolution of ≈30 microns [14,22,32–34]. All
our analyses have been carried out over the inner region of
the packings, four sphere diameters away from the container
walls to avoid the boundary effects. These inner regions are
then decomposed into nonoverlapping cubical subsets each
containing 4000 beads. A total of 94 subsets are produced
from all the packings listed in Table I. As a consequence of
structural heterogeneity in our partially crystallized packings
(see Fig. 1), the 4000-bead subsets cover a wide range of
packing densities spanning from φ = 0.58 to φ = 0.73.

III. DEM SIMULATION

The digital representation of each packing is realized using
XCT and a range of postprocessing image analysis techniques.
Each grain in the 3D digital representation (tomogram) is
made of a cluster of ≈19 000 voxels and each tricubic voxel
represents 303 µm of space known as the image resolution. As
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Fig. 2.2. (a) – a regular tetrahedron; (b) – a regular quartoctahedron (one edge √2 times loner 
then other ones); (c) – a flat simplex with a shape of a square; (d) – a perfect octahedron. The 
octahedron is divided by infinitesimal perturbations on four quartoctahedra or four quartocta-
hedra and one flat simplex [Vol89].  
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Fig. 1. (Left) Volume rendering of ∼ 150; 000 sphere-pack in a cylindrical container. (Right) Same image
with the topological distances from a given central sphere highlighted in colours (online version). Movies
are available at the URL: http://www.rsphysse.anu.edu.au/appmaths/ct movies/

Sphere centres. In order to proceed with the analysis of the geometrical and statisti-
cal properties the position of all sphere centres are calculated from the binary images.
Our approach is to !nd the sphere centres by moving a reference sphere (S) throughout
the binarized sphere pack (P) and measuring the local overlap between S and P. This
corresponds to a three-dimensional convolution: P ∗ S. This method is made highly
e"cient by applying the convolution theorem which allow to transform the convolu-
tion into a product in Fourier space: F[P ∗ S] =F[P]F[S], where F represents the
(fast)Fourier Transform. The algorithm proceeds in 4 steps: (1) fast Fourier transform
of the binary image (F[P]); (2) transform the digitized map of the reference sphere
(F[S], chosen with a diameter about 10% smaller than d); (3) perform the direct prod-
uct between these two; (4) inverse-transform of the product: F−1[F[P]F[S]]=P ∗S.
The result is an intensity map of the overlapping between the reference sphere and
the bead pack, where the voxels closer to the sphere centres have a higher intensity.
A threshold on the intensity map, locates the groups of voxels surrounding the sphere
centres. The centre of mass of these grouped voxels is a very good estimation of the
sphere centres in the pack.
Central region. All the analyses reported hereafter have been performed over a

central region (G) at 4 sphere-diameters away from the sample boundaries. Note that
spheres outside G are considered when computing the neighbouring environment of
spheres in G. The two large samples have about NG ∼ 80; 000 spheres in G, whereas
the four smaller have about NG ∼ 20; 000. In Table 1, the number of spheres in this
region (NG) is reported for each sample.
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To create partially crystallized packings, the whole container is placed on a
shaker allowing for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f¼ 50 Hz, the vertical component of the
acceleration gv is set to be five times larger than the horizontal one gh. In these
experiments, gv is constant and set to 2.5g (where g is the gravitational
acceleration). The presence of 3D vibrations enhance crystallization. The container
is vibrated for 20 s (1,000 periods). The resulting packings show substantial
crystallization with a global packing density well beyond Bernal’s limit, ranging
from f¼ 0.66 to f¼ 0.72.

For gv¼ 2.5g, a collective lift off of the packing is observed in the cylindrical
container. In this regime, both compaction and convection are observed57.
The convection phenomenon plays a crucial role in the compaction/crystallization.
Indeed, at lower drive, convection is absent, a very slow compaction is observed but
the packing remains amorphous. In the cylindrical container, it was observed that
confining the packing with a plate placed on its top enhances the crystallization
process (N.B.: the plate fits perfectly in the container and can oscillate freely in the
vertical direction). Measurements of the packing height during the vibration
suggest that the packing remains dense (shows weak dilation) during the process;
in this sense, our method is based on compaction by dense fluidization. The same
observation holds for packings confined in a spherical geometry, nevertheless the
convection streams always appear to be more intense in this case, which results in
the formation of denser packings f40.68.

Tomography and image analysis. A typical experimental packing contains about
100,000 grains and the 3D digital image (tomogram) of the packings has a voxel
size (voxel resolution) of E30 micrometres. The beads are digitally separated by
using a set of algorithms developed at ANU58,59. For a 1 mm diameter grain, each
grain is represented by a cluster of (4/3)p(33/2)3E19,000 voxels and each grain’s

surface corresponds to a cluster of 4p(33/2)2E3,400 voxels. A grain centre is the
geometric centroid of the 19,000 voxel coordinates that belong to the grain, that is,
the grain centre is an average quantity computed from these large clusters of voxels
that represent each grain. As a consequence of the large voxel representation of a
grain’s volume, the resolution on the grain centre determination is extremely high,
that is, E10" 3 micrometres. The precision (typical error) on the centroid
determination is related to the segmentation of the voxels that cover the surface of
a grain. For such a simple biphasic material, the segmentation process using our in-
house software is very robust and it ensures that the precision of our measurements
is comparable to our resolution within a factor of order unity58. To further assess
the robustness of our results, we have performed topological analysis on
experimental packing structures that have been postprocessed and relaxed using a
discrete element method code12,13. PD2 obtained on these numerically relaxed
structures are identical to the experimental one.

As a consequence of the large voxel representation of a grain’s surface, we are
able to determine the average radius of a grain with a 5# 10" 2 mm resolution. This
radius has to be understood as the effective radius of an equivalent perfect sphere.
By measuring the distribution of grain radii, we found that this distribution shows
an average diameter of 1 mm and a width of 0.05 mm. In the main text, the width
of this distribution is expressed as a 2.5% grain polydispersity.

PH: mathematical formulation. The starting point for computing homology is a
complex, C, essentially a collection of building blocks whose union is the shape of
interest. In a simplicial complex, the building blocks are points, edges, triangles,
tetrahedra and higher dimensional simplices.

A k-chain is a formal sum of k-dimensional simplices and the boundary
operator is a linear map from k-chains to (k" 1)-chains defined by adding up the
(k" 1)-dimensional faces of the k-simplices in the k-chain. The ‘adding’ is done
with respect to some coefficient group; in practical applications, this is usually Z2,
addition modulo 2. A k-cycle is a chain whose boundary is empty (the sum of its
faces cancel out). Two k-cycles are said to be homologous if their difference is the
boundary of a (kþ 1)-dimensional chain. The homology groups Hk encode these
equivalence classes of k-cycles.

H0 represents the connected components of the simplicial complex. H1 encodes
equivalence classes of 1-cycles (that is, loops). Finally, H2, is the equivalence classes
of 2-cycles (that is, cavities).

PH extends this formalism from a single simplicial complex to a growing
sequence of nested complexes called a filtration: Caf ga2R . The complexes satisfy
Ca % Cb whenever aob. The filtration parameter a can be a length scale or some
other scalar ordering parameter. When a k-simplex is added to a complex in the
filtration, all its faces must already be present and so the new simplex must either
create a new k-cycle or fill in a ‘hole’ and make the existing (k" 1)-cycle formed by
its faces into a boundary. By tracking homologous cycles as simplices are added to
the filtration, PH is able to pair the k-simplex that creates a k-cycle with the
(kþ 1)-simplex that fills it in and destroys it. Each PH class therefore has two
values of the filtration parameter associated with it: a birth value and a death value,
as well as the actual birth and death simplices. Some cycles may be present in the
final simplicial complex, these are called essential cycles and are assigned a death
value of infinity. It is common practice to represent this information in a
persistence diagram for each dimension of homology. PDk contains all pairs (b, d),
brd, associated with PH in dimension k.

The simplicial complex we use for the bead packing data is built from the DT as
follows. The bead packing data are specified by coordinates for the centre of each
bead and its radius as extracted from micro-CT images. Recall that the definition of
the DT is the union of all tetrahedra whose vertices are four data points such that
their circumsphere contains no other data point. The simplicial complex contains
all these tetrahedra, their triangular faces, edges and vertices. A length-scale
parameter, a, is introduced to define subsets of the DT called alpha shapes, A(a),
that capture the topology of the union of balls of radius a growing around each
bead centre, X(a)¼

S
B(x, a),60,61. The alpha shape contains all tetrahedra whose

circumradius rra and all lower dimensional simplices with circumradius less than
alpha, whose circumsphere is also empty (that is, contains no other data point).
Note that this empty circumsphere condition is not automatically satisfied by the
lower-dimensional faces of Delaunay tetrahedra. For example, the edge opposite an
obtuse angle in a triangle will have a circumsphere that contains its opposite vertex.

The filtration is the growing sequence of alpha shapes A(a) as a increases from 0
to N. Since the bead pack has a finite number of beads, the DT is finite and the
topology of A(a) changes at a discrete set of values of a. If we assume that the bead
pack is mono-disperse with bead radius¼ r, then for 0oaor, A(a) is simply the set
of data points at the bead centres. For a4r, bead contacts are resolved and A(a)
becomes connected, initially with many holes that are then filled in as a increases.
For a perfectly mono-disperse bead pack with no ‘rattlers’, all points in PD0 have
birth¼ 0 and death¼ r. Points in PD1 have all birth values bZr. One-cycles with
b¼ r are generated by three or four beads in contact forming a ring; those with b4r
are formed by triangular faces of Delaunay tetrahedra where not all four beads are in
contact. PD2 carries the most interesting signature of structure for the disordered
and partially crystallized bead packings. Each point in PD2 represents a kind of ‘pore’
in the interstices between the beads. The simplest and smallest pore is that formed
inside four beads close packed as a regular tetrahedron. This pore is born when a
reaches the circumradius of an equilateral triangle and dies when
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Figure 7 | Numerical simulation of the dynamics of the order–disorder
transition of a bead packing under shear. (a) Packing density versus time
(expressed in inverse shear rate units). (b) Snapshot of the numerically
generated packings as it gets disordered. (c–f) Temporal evolution of
PD2 at different packing density ranging from f¼0.72 to f¼0.63.
These diagrams have been computed over 46,000 beads.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15082

8 NATURE COMMUNICATIONS | 8:15082 | DOI: 10.1038/ncomms15082 | www.nature.com/naturecommunications

To create partially crystallized packings, the whole container is placed on a
shaker allowing for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f¼ 50 Hz, the vertical component of the
acceleration gv is set to be five times larger than the horizontal one gh. In these
experiments, gv is constant and set to 2.5g (where g is the gravitational
acceleration). The presence of 3D vibrations enhance crystallization. The container
is vibrated for 20 s (1,000 periods). The resulting packings show substantial
crystallization with a global packing density well beyond Bernal’s limit, ranging
from f¼ 0.66 to f¼ 0.72.

For gv¼ 2.5g, a collective lift off of the packing is observed in the cylindrical
container. In this regime, both compaction and convection are observed57.
The convection phenomenon plays a crucial role in the compaction/crystallization.
Indeed, at lower drive, convection is absent, a very slow compaction is observed but
the packing remains amorphous. In the cylindrical container, it was observed that
confining the packing with a plate placed on its top enhances the crystallization
process (N.B.: the plate fits perfectly in the container and can oscillate freely in the
vertical direction). Measurements of the packing height during the vibration
suggest that the packing remains dense (shows weak dilation) during the process;
in this sense, our method is based on compaction by dense fluidization. The same
observation holds for packings confined in a spherical geometry, nevertheless the
convection streams always appear to be more intense in this case, which results in
the formation of denser packings f40.68.

Tomography and image analysis. A typical experimental packing contains about
100,000 grains and the 3D digital image (tomogram) of the packings has a voxel
size (voxel resolution) of E30 micrometres. The beads are digitally separated by
using a set of algorithms developed at ANU58,59. For a 1 mm diameter grain, each
grain is represented by a cluster of (4/3)p(33/2)3E19,000 voxels and each grain’s

surface corresponds to a cluster of 4p(33/2)2E3,400 voxels. A grain centre is the
geometric centroid of the 19,000 voxel coordinates that belong to the grain, that is,
the grain centre is an average quantity computed from these large clusters of voxels
that represent each grain. As a consequence of the large voxel representation of a
grain’s volume, the resolution on the grain centre determination is extremely high,
that is, E10" 3 micrometres. The precision (typical error) on the centroid
determination is related to the segmentation of the voxels that cover the surface of
a grain. For such a simple biphasic material, the segmentation process using our in-
house software is very robust and it ensures that the precision of our measurements
is comparable to our resolution within a factor of order unity58. To further assess
the robustness of our results, we have performed topological analysis on
experimental packing structures that have been postprocessed and relaxed using a
discrete element method code12,13. PD2 obtained on these numerically relaxed
structures are identical to the experimental one.

As a consequence of the large voxel representation of a grain’s surface, we are
able to determine the average radius of a grain with a 5# 10" 2 mm resolution. This
radius has to be understood as the effective radius of an equivalent perfect sphere.
By measuring the distribution of grain radii, we found that this distribution shows
an average diameter of 1 mm and a width of 0.05 mm. In the main text, the width
of this distribution is expressed as a 2.5% grain polydispersity.

PH: mathematical formulation. The starting point for computing homology is a
complex, C, essentially a collection of building blocks whose union is the shape of
interest. In a simplicial complex, the building blocks are points, edges, triangles,
tetrahedra and higher dimensional simplices.

A k-chain is a formal sum of k-dimensional simplices and the boundary
operator is a linear map from k-chains to (k" 1)-chains defined by adding up the
(k" 1)-dimensional faces of the k-simplices in the k-chain. The ‘adding’ is done
with respect to some coefficient group; in practical applications, this is usually Z2,
addition modulo 2. A k-cycle is a chain whose boundary is empty (the sum of its
faces cancel out). Two k-cycles are said to be homologous if their difference is the
boundary of a (kþ 1)-dimensional chain. The homology groups Hk encode these
equivalence classes of k-cycles.

H0 represents the connected components of the simplicial complex. H1 encodes
equivalence classes of 1-cycles (that is, loops). Finally, H2, is the equivalence classes
of 2-cycles (that is, cavities).

PH extends this formalism from a single simplicial complex to a growing
sequence of nested complexes called a filtration: Caf ga2R . The complexes satisfy
Ca % Cb whenever aob. The filtration parameter a can be a length scale or some
other scalar ordering parameter. When a k-simplex is added to a complex in the
filtration, all its faces must already be present and so the new simplex must either
create a new k-cycle or fill in a ‘hole’ and make the existing (k" 1)-cycle formed by
its faces into a boundary. By tracking homologous cycles as simplices are added to
the filtration, PH is able to pair the k-simplex that creates a k-cycle with the
(kþ 1)-simplex that fills it in and destroys it. Each PH class therefore has two
values of the filtration parameter associated with it: a birth value and a death value,
as well as the actual birth and death simplices. Some cycles may be present in the
final simplicial complex, these are called essential cycles and are assigned a death
value of infinity. It is common practice to represent this information in a
persistence diagram for each dimension of homology. PDk contains all pairs (b, d),
brd, associated with PH in dimension k.

The simplicial complex we use for the bead packing data is built from the DT as
follows. The bead packing data are specified by coordinates for the centre of each
bead and its radius as extracted from micro-CT images. Recall that the definition of
the DT is the union of all tetrahedra whose vertices are four data points such that
their circumsphere contains no other data point. The simplicial complex contains
all these tetrahedra, their triangular faces, edges and vertices. A length-scale
parameter, a, is introduced to define subsets of the DT called alpha shapes, A(a),
that capture the topology of the union of balls of radius a growing around each
bead centre, X(a)¼

S
B(x, a),60,61. The alpha shape contains all tetrahedra whose

circumradius rra and all lower dimensional simplices with circumradius less than
alpha, whose circumsphere is also empty (that is, contains no other data point).
Note that this empty circumsphere condition is not automatically satisfied by the
lower-dimensional faces of Delaunay tetrahedra. For example, the edge opposite an
obtuse angle in a triangle will have a circumsphere that contains its opposite vertex.

The filtration is the growing sequence of alpha shapes A(a) as a increases from 0
to N. Since the bead pack has a finite number of beads, the DT is finite and the
topology of A(a) changes at a discrete set of values of a. If we assume that the bead
pack is mono-disperse with bead radius¼ r, then for 0oaor, A(a) is simply the set
of data points at the bead centres. For a4r, bead contacts are resolved and A(a)
becomes connected, initially with many holes that are then filled in as a increases.
For a perfectly mono-disperse bead pack with no ‘rattlers’, all points in PD0 have
birth¼ 0 and death¼ r. Points in PD1 have all birth values bZr. One-cycles with
b¼ r are generated by three or four beads in contact forming a ring; those with b4r
are formed by triangular faces of Delaunay tetrahedra where not all four beads are in
contact. PD2 carries the most interesting signature of structure for the disordered
and partially crystallized bead packings. Each point in PD2 represents a kind of ‘pore’
in the interstices between the beads. The simplest and smallest pore is that formed
inside four beads close packed as a regular tetrahedron. This pore is born when a
reaches the circumradius of an equilateral triangle and dies when
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Figure 7 | Numerical simulation of the dynamics of the order–disorder
transition of a bead packing under shear. (a) Packing density versus time
(expressed in inverse shear rate units). (b) Snapshot of the numerically
generated packings as it gets disordered. (c–f) Temporal evolution of
PD2 at different packing density ranging from f¼0.72 to f¼0.63.
These diagrams have been computed over 46,000 beads.
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density range [φBernal,φc] [29]. Some crucial features of this
study have recently been observed in 3D realistic packings
(i.e., weakly polydisperse and frictional) by the authors of
the present paper [30]. Here we intend to extend this first
experimental study and draw a more exhaustive picture of the
structure of partially crystallized packings.

In this contribution, we take advantage of a helical x-ray
tomography setup to image 3D packings containing up to
200 000 frictional spheres in both cylindrical and spherical
containers. We employ a simple vibrational protocol to
produce partially crystallized packings. Using state-of-the-art
experimental and numerical techniques, we can study the
evolution of geometrical and mechanical features at the global
and at the grain scale during the disordered-ordered transition.

This paper is organized as follows. Section II describes
the experimental setup and the procedure used to obtain
partially crystallized packings. Section III details the nu-
merical calculations performed on the experimental data in
order to describe the force network with numerical precision
and access the tangential forces. Section IV characterizes
the geometrical transition when the packing density crosses
φBernal = 0.64. Section V focuses on the mechanical features
of the crystallization process in terms of grain contacts and the
evolution of a topological descriptor.

II. EXPERIMENTAL DETAILS

We use monosized acrylic beads (diameter d = 1.00 and
1.62 mm; polydispersity = 0.025 mm), which are packed into
large containers (inner diameter = 66 mm). The beads are
covered with graphite to reduce electrostatic repulsion between
them. Nine packings of beads are prepared in cylindrical and
spherical containers (see details in Table I). Five of them
are produced by simply pouring the beads into the container
following the methods described in [14]. The other four, with a
density φ ≫ φBernal, are generated according to the vibrational
protocol described below.

Our experimental method is based on compaction by
an intense fluidization of the packing [22,31]. A batch of
beads is initially poured into a container forming a random
packing. The container is then placed on a shaker allowing
for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f = 50 Hz; the vertical
component of the acceleration γν is set to be five times

TABLE I. Summary of the experimental packings used in this
study. N is the number of grains used for the analysis, φ is the global
packing density, and D is the grain diameter.

Container N φ D (mm)

1 Cylinder 26498 0.59 1.62
2 Cylinder 25797 0.61 1.62
3 Cylinder 27555 0.60 1.62
4 Cylinder 27665 0.61 1.62
5 Cylinder 156315 0.63 1.00
6 Cylinder 31005 0.66 1.62
7 Cylinder 216722 0.685 1.00
8 Spherical 60205 0.685 1.00
9 Spherical 64042 0.72 1.00

FIG. 1. (Color online) 3D visualization of a partially crystallized
packing containing ≈200 000 beads. Bright regions indicate the
location of disordered aggregates of beads, which have been identified
using the q6 metrics (see Sec. IV).

larger than the horizontal one γh. In these experiments, γν

is constant and set to 2.5g (where g is the gravitational
acceleration). The container is vibrated intensely for 20 s.
The resulting packings show substantial crystallization, with
a global packing density well beyond Bernal’s limit, ranging
from 0.66 to 0.72. The compaction protocol presented here
is robust and allows us to consistently generate partially
crystallized packings irrespective of the packing container.

Figure 1(a) shows a 3D rendering of a partially crystallized
structure. The bright regions correspond to locally disordered
aggregates of beads; a disordered core and the boundaries
between different crystal domains are signified by the bright
regions. Both random and crystalline phases coexist in the
packing, yielding nonuniform packing densities across the
sample. Helical x-ray computed tomography (XCT) is utilized
to digitally access the internal 3D structure of the packings
with a spatial resolution of ≈30 microns [14,22,32–34]. All
our analyses have been carried out over the inner region of
the packings, four sphere diameters away from the container
walls to avoid the boundary effects. These inner regions are
then decomposed into nonoverlapping cubical subsets each
containing 4000 beads. A total of 94 subsets are produced
from all the packings listed in Table I. As a consequence of
structural heterogeneity in our partially crystallized packings
(see Fig. 1), the 4000-bead subsets cover a wide range of
packing densities spanning from φ = 0.58 to φ = 0.73.

III. DEM SIMULATION

The digital representation of each packing is realized using
XCT and a range of postprocessing image analysis techniques.
Each grain in the 3D digital representation (tomogram) is
made of a cluster of ≈19 000 voxels and each tricubic voxel
represents 303 µm of space known as the image resolution. As
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