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granular	  and	  porous	  materials	  

OMawa	  sand	   Clashach	  sandstone	  

1mm	  scale	  bars	  

Mt	  Gambier	  limestone	  

Want	  accurate	  geometric	  and	  topological	  characterisa2on	  from	  x-‐ray	  micro-‐CT	  images	  
•  pore	  and	  grain	  size	  distribu2ons,	  structure	  of	  immiscible	  fluid	  distribu2ons	  
•  adjacencies	  between	  elements,	  network	  models	  	  	  	  

Understand	  how	  these	  quan22es	  correlate	  with	  physical	  proper2es	  such	  as	  
•  diffusion,	  permeability,	  mechanical	  response	  to	  load.	  	  	  	  

figures	  obtained	  at	  the	  ANU	  micro	  CT	  facility	  



Topology	  from	  data?	  	  
•  Challenge:	  compute	  topological	  invariants	  from	  finite	  noisy	  data	  

with	  structure	  on	  different	  length-‐scales.	  	  
–  e.g.	  connected	  components	  (clustering)	  
–  Euler	  characteris2c,	  	  Be_	  numbers,	  homology	  groups.	  	  

•  Requirements:	  	  
–  a	  cell	  complex	  
–  efficient	  algorithms	  
–  sta2s2cal	  methods	  for	  the	  analysis	  of	  topological	  invariants	  

•  Applica2ons:	  
–  Spherical	  bead	  packings	  and	  other	  granular	  and	  porous	  materials	  	  
–  Glass	  transi2on,	  Materials	  informa2cs	  (for	  MOFs,	  etc.)	  	  	  
–  Histology	  image	  analysis,	  protein	  structure,	  distribu2on	  of	  galaxies	  in	  the	  

universe,	  dynamical	  systems/	  2me	  series	  analysis,	  …..	  



How	  to	  build	  a	  complex	  
•  Points	  are	  X	  =	  {x1,	  x2,	  x3,	  …,	  xn}	  in	  (M,d)	  a	  metric	  space	  
•  The	  Rips	  complex	  R(X,α)	  has	  a	  k-‐simplex	  [a0,a1,	  …,	  ak]	  for	  ai	  in	  X,	  	  

	  if	  d(ai,	  aj)	  <	  2α	  for	  all	  pairs	  i,j=	  0,…,k.	  	  
•  The	  Cech	  complex	  C(X,α)	  has	  a	  k-‐simplex	  [a0,a1,	  …,	  ak]	  for	  ai	  in	  X,	  	  

	  when	  Π	  B(ai,α)	  is	  non-‐empty.	  

•  Cech	  complex	  is	  homotopic	  to	  the	  union	  of	  balls	  so	  it	  captures	  the	  	  
geometry	  of	  X	  more	  accurately,	  but	  Rips	  is	  simpler	  to	  build.	  	  	  	  

	  
	  

α

Xα	  =	  U	  B(x,α)	   Rips	  	  R(X,α) 	   Cech	  C(X,α) 	  



How	  to	  build	  a	  complex	  
•  If	  your	  metric	  space	  is	  R2,	  R3,	  or	  R4,	  the	  best	  geometric	  complex	  is	  the	  

Alpha	  Shape,	  A(X,α).	  	  	  	  [H.	  Edelsbrunner	  (1983,1994,1995)].	  
•  A(X,α)	  is	  a	  subset	  of	  the	  Delaunay	  Triangula2on.	  
•  A	  k-‐simplex	  [a0,a1,	  …,	  ak]	  is	  in	  A(X,α)	  if	  its	  circumsphere	  is	  empty	  and	  

circumradius	  <	  α.	  	  	  

Alpha	  Shape	  A(X,α)
Xα	  =	  U	  B(x,α) 	  

Delaunay	  
Voronoi	  	  



Simplicial	  homology	  
•  K	  is	  a	  simplicial	  complex.	  	  
•  The	  k-‐th	  chain	  group	  Ck(K,	  G)	  is	  the	  free	  abelian	  group	  with	  coefficients	  G,	  

generated	  by	  the	  oriented	  k-‐simplices	  of	  K.	  
•  The	  boundary	  operator	  maps	  each	  k-‐simplex	  onto	  the	  sum	  of	  the	  (k-‐1)-‐

simplices	  that	  are	  its	  faces.	  	  	  

•  The	  image	  of	  	  	  	  	  	  	  	  is	  the	  boundary	  group,	  Bk-‐1	  
•  The	  kernel	  of	  	  	  	  	  	  	  	  is	  the	  cycle	  group,	  Zk	  	  
•  The	  homology	  group	  is	  Hk	  =	  Zk	  /	  Bk	  
•  The	  structure	  theorem	  for	  finitely	  generated	  abelian	  groups	  tells	  us	  that	  if	  

G	  =	  Z,	  (integers)	  then	  	  	  

•  βk	  is	  the	  Be_	  number	  and	  ti	  are	  the	  torsion	  coefficients	  

@k

@k : Ck �! Ck�1 @k�1@k = 0

€ 

Hk (K,Z) = Z ⊕ ...⊕ Z ⊕ Zt1 ⊕ ...⊕ Ztm

βk	  	  copies	  

@k

1	  

2	  

3	  

4	  



β0=9,	  	  β1=0	   β0=3,	  	  β1=2	   β0=1,	  	  β1=2	  

Be_	  number	  func2ons	  of	  A(X,α)	  
are	  not	  stable	  wrt	  small	  changes	  
in	  point	  loca2ons.	  	  	  
	  
But	  persistent	  homology	  intervals	  are.	  
	  
Cohen-‐Steiner,	  Edelsbrunner,	  Harer	  (2007)	  
	  



Fractal	  examples	  
b0	  is	  number	  of	  
components	  
	  
b1	  is	  number	  of	  holes	  
	  
Problem	  with	  coun2ng	  
holes	  that	  do	  not	  persist	  
for	  smaller	  radii.	  	  	  

b1	  

b1	  

b0	  

b0	  



Persistent	  homology	  
Let	  Xa	  =	  U	  B(x,a)	  	  	  so	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  a	  <	  b.	  	  	  
The	  cell	  complexes,	  R(X,a),	  C(X,a)	  and	  A(X,a)	  also	  have	  this	  inclusion	  property.	  	  
Homology	  is	  a	  functor	  so	  i	  	  becomes	  a	  group	  homomorphism:	  	  	  
	  
The	  persistent	  homology	  group	  is	  the	  image	  of	  i*	  :	  
	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [VR	  Topology	  Proceedings	  1999]	  

i⇤ : Hk(Xa) ! Hk(Xb)

i : Xa ,! Xb

Hk(a, b) = i ⇤ (Hk(Xa)) = Zk(Xa)/(Bk+1(Xb) \ Zk(Xa))

A(X,a)	   A(X,b)	  



Persistent	  homology	  
Algorithmic	  defini2on	  
When	  adding	  a	  single	  k-‐simplex,	  σk,	  to	  a	  cell	  complex	  that	  already	  contains	  all	  
faces	  of	  σk	  exactly	  one	  of	  two	  changes	  in	  topology	  can	  happen:	  	  

•  σk	  creates	  a	  k-‐cycle	  (it	  is	  marked	  +ve)	  
•  σk	  makes	  a	  (k-‐1)-‐cycle	  a	  boundary	  (it	  is	  marked	  –ve)	  	  

[Delfinado	  and	  Edelsbrunner,	  1993]	  	  
	  
A	  persistent	  homology	  class	  is	  found	  by	  pairing	  each	  –ve	  k-‐simplex	  with	  the	  
most	  recently	  added	  and	  as-‐yet-‐unpaired	  +ve	  (k-‐1)-‐simplex	  in	  its	  boundary	  
class.	  [Edelsbrunner,	  Letscher,	  Zomorodian,	  DCG	  2002].	  	  
	  	  	  	  
	  
	  {1,	  2,	  3,	  4,	  [12],	  [34],	  [24],	  [13],	  [23],	  [123]	  }	  

1	  

2	  

3	  

4	  



Persistent	  homology	  
•  A	  more	  algebraically	  sophis2cated	  view	  of	  persistent	  homology	  is	  given	  by	  

G.	  Carlsson	  (e.g.	  AMS	  Bulle2n,	  2009).	  	  
•  A	  filtra2on	  is	  a	  directed	  space:	  	  

•  The	  functorial	  property	  of	  homology	  means	  the	  induced	  maps	  on	  
homology	  groups	  also	  form	  a	  directed	  space.	  	  

•  If	  the	  coefficient	  group	  is	  a	  field	  (e.g.	  R,	  or	  Z2)	  we	  can	  form	  a	  graded	  
module	  of	  this	  homology	  sequence	  and	  an	  algebraic	  structure	  theorem	  
tells	  us	  that	  

•  This	  collec2on	  of	  intervals	  is	  called	  the	  barcode.	  	  
•  If	  we	  plot	  the	  (b,d)	  values	  on	  2D	  axes,	  it	  is	  called	  the	  persistence	  diagram.	  	  
•  The	  func2on	  βk(a,b)	  =	  rank	  Hk(a,b)	  is	  the	  persistent	  homology	  rank	  

func2on	  	  

X0 ⇢ X1 ⇢ X2 · · · ⇢ Xn

PHk(X) =
NM

i=1

I[bi, di]



+	  

(bi,di)	  

βi(x,y)	  =	  #	  PDi	  pts	  to	  upper	  leV	  of	  (x,y)	  
.	   βi(x)	  
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density range [φBernal,φc] [29]. Some crucial features of this
study have recently been observed in 3D realistic packings
(i.e., weakly polydisperse and frictional) by the authors of
the present paper [30]. Here we intend to extend this first
experimental study and draw a more exhaustive picture of the
structure of partially crystallized packings.

In this contribution, we take advantage of a helical x-ray
tomography setup to image 3D packings containing up to
200 000 frictional spheres in both cylindrical and spherical
containers. We employ a simple vibrational protocol to
produce partially crystallized packings. Using state-of-the-art
experimental and numerical techniques, we can study the
evolution of geometrical and mechanical features at the global
and at the grain scale during the disordered-ordered transition.

This paper is organized as follows. Section II describes
the experimental setup and the procedure used to obtain
partially crystallized packings. Section III details the nu-
merical calculations performed on the experimental data in
order to describe the force network with numerical precision
and access the tangential forces. Section IV characterizes
the geometrical transition when the packing density crosses
φBernal = 0.64. Section V focuses on the mechanical features
of the crystallization process in terms of grain contacts and the
evolution of a topological descriptor.

II. EXPERIMENTAL DETAILS

We use monosized acrylic beads (diameter d = 1.00 and
1.62 mm; polydispersity = 0.025 mm), which are packed into
large containers (inner diameter = 66 mm). The beads are
covered with graphite to reduce electrostatic repulsion between
them. Nine packings of beads are prepared in cylindrical and
spherical containers (see details in Table I). Five of them
are produced by simply pouring the beads into the container
following the methods described in [14]. The other four, with a
density φ ≫ φBernal, are generated according to the vibrational
protocol described below.

Our experimental method is based on compaction by
an intense fluidization of the packing [22,31]. A batch of
beads is initially poured into a container forming a random
packing. The container is then placed on a shaker allowing
for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f = 50 Hz; the vertical
component of the acceleration γν is set to be five times

TABLE I. Summary of the experimental packings used in this
study. N is the number of grains used for the analysis, φ is the global
packing density, and D is the grain diameter.

Container N φ D (mm)

1 Cylinder 26498 0.59 1.62
2 Cylinder 25797 0.61 1.62
3 Cylinder 27555 0.60 1.62
4 Cylinder 27665 0.61 1.62
5 Cylinder 156315 0.63 1.00
6 Cylinder 31005 0.66 1.62
7 Cylinder 216722 0.685 1.00
8 Spherical 60205 0.685 1.00
9 Spherical 64042 0.72 1.00

FIG. 1. (Color online) 3D visualization of a partially crystallized
packing containing ≈200 000 beads. Bright regions indicate the
location of disordered aggregates of beads, which have been identified
using the q6 metrics (see Sec. IV).

larger than the horizontal one γh. In these experiments, γν

is constant and set to 2.5g (where g is the gravitational
acceleration). The container is vibrated intensely for 20 s.
The resulting packings show substantial crystallization, with
a global packing density well beyond Bernal’s limit, ranging
from 0.66 to 0.72. The compaction protocol presented here
is robust and allows us to consistently generate partially
crystallized packings irrespective of the packing container.

Figure 1(a) shows a 3D rendering of a partially crystallized
structure. The bright regions correspond to locally disordered
aggregates of beads; a disordered core and the boundaries
between different crystal domains are signified by the bright
regions. Both random and crystalline phases coexist in the
packing, yielding nonuniform packing densities across the
sample. Helical x-ray computed tomography (XCT) is utilized
to digitally access the internal 3D structure of the packings
with a spatial resolution of ≈30 microns [14,22,32–34]. All
our analyses have been carried out over the inner region of
the packings, four sphere diameters away from the container
walls to avoid the boundary effects. These inner regions are
then decomposed into nonoverlapping cubical subsets each
containing 4000 beads. A total of 94 subsets are produced
from all the packings listed in Table I. As a consequence of
structural heterogeneity in our partially crystallized packings
(see Fig. 1), the 4000-bead subsets cover a wide range of
packing densities spanning from φ = 0.58 to φ = 0.73.

III. DEM SIMULATION

The digital representation of each packing is realized using
XCT and a range of postprocessing image analysis techniques.
Each grain in the 3D digital representation (tomogram) is
made of a cluster of ≈19 000 voxels and each tricubic voxel
represents 303 µm of space known as the image resolution. As

062202-2
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Fig. 1. (Left) Volume rendering of ∼ 150; 000 sphere-pack in a cylindrical container. (Right) Same image
with the topological distances from a given central sphere highlighted in colours (online version). Movies
are available at the URL: http://www.rsphysse.anu.edu.au/appmaths/ct movies/

Sphere centres. In order to proceed with the analysis of the geometrical and statisti-
cal properties the position of all sphere centres are calculated from the binary images.
Our approach is to !nd the sphere centres by moving a reference sphere (S) throughout
the binarized sphere pack (P) and measuring the local overlap between S and P. This
corresponds to a three-dimensional convolution: P ∗ S. This method is made highly
e"cient by applying the convolution theorem which allow to transform the convolu-
tion into a product in Fourier space: F[P ∗ S] =F[P]F[S], where F represents the
(fast)Fourier Transform. The algorithm proceeds in 4 steps: (1) fast Fourier transform
of the binary image (F[P]); (2) transform the digitized map of the reference sphere
(F[S], chosen with a diameter about 10% smaller than d); (3) perform the direct prod-
uct between these two; (4) inverse-transform of the product: F−1[F[P]F[S]]=P ∗S.
The result is an intensity map of the overlapping between the reference sphere and
the bead pack, where the voxels closer to the sphere centres have a higher intensity.
A threshold on the intensity map, locates the groups of voxels surrounding the sphere
centres. The centre of mass of these grouped voxels is a very good estimation of the
sphere centres in the pack.
Central region. All the analyses reported hereafter have been performed over a

central region (G) at 4 sphere-diameters away from the sample boundaries. Note that
spheres outside G are considered when computing the neighbouring environment of
spheres in G. The two large samples have about NG ∼ 80; 000 spheres in G, whereas
the four smaller have about NG ∼ 20; 000. In Table 1, the number of spheres in this
region (NG) is reported for each sample.

spherical	  bead	  packing	  

Disordered	  packing	  	  	  
(random	  close	  pack,	  maximally	  jammed)	  
Bernal	  limit	  has	  vol	  frac	  Φ =	  64%	  
Well-‐defined	  distribu2on	  of	  local	  volumes	  

Par2ally	  crystallized	  packing,	  Φ=70%	  
a	  fully	  crystallized	  packing	  has	  Φ=74%	  
(i.e	  layers	  of	  hexagonally	  close	  packed	  spheres)	  

data	  from	  M	  Saadavaar,	  ANU	  x-‐ray	  CT	  of	  ~150K	  beads,	  (1.00	  +/-‐	  0.025)mm	  diameter.	  



spherical	  bead	  packing	  

which are packed into large cylindrical or spherical con-
tainers (inner diameter ¼ 66 mm). A batch of approxi-
mately 200 000 beads is poured into the container
forming an initial packing in a random configuration with
a volume fraction ! ranging from 57% to 63%. The pack-
ings are then shaken intensely for few seconds, to the point
of fluidization [14], where a fast compaction is observed.
The resulting global packing density ranges from 68.5% up
to 71.5%. The internal structure of these packings is
imaged by means of x-ray computed tomography (see
Refs. [23,24] and the Supplemental Material [25]).
Figure 1(a) shows a tomographic slice of a dense packing
obtained in a spherical geometry. The heterogeneous struc-
ture of the packing is evident with disordered domains
(! " 0:65) coexisting with large and almost perfectly crys-
talline clusters (! " 0:732).We have consistently obtained
such partially crystallized packings, whose statistical and
topological features primarily depend on ! regardless of
the initial jammed configuration or the container geometry.
Our analyses have been carried out on global packings as
well as subsets containing 4000 spheres [26].

To explore how local configurations become denser
during the crystallization, we divide the packing according
to the Voronoi tessellation [inset of Fig. 1(b)]. This grain-
centered partitioning allows us to estimate the probability
distribution function (PDF) of the local volume fluctua-
tions and their statistics: i.e., its variance"2, mean value !V,
and minimal bound Vmin.

Figure 1(b) shows such a PDF for decreasing global
volume fraction. The PDF for disordered packings
(!< 0:64) is asymmetric and corresponds to a gamma
law whose variance decreases with compaction [inset of
Fig. 1(c) and Ref. [27]]. In the density range ! 2
½0:64; 0:68$, although the global volume fraction decreases

( !V decreases), the PDF flattens and its variance increases.
Beyond ! " 0:68, it gets narrower and peaks around
V ¼ 0, 71 mm3, which corresponds to cubo-octahedral
crystalline configurations.
An intensive granular variable kg ¼ ð !V & VminÞ2="2

has recently been suggested as granular material’s equiva-
lent of ‘‘specific heat’’ [27]. kg should therefore be a
measure of structural rearrangements probed over the local
volume fluctuations. This parameter reveals three succes-
sive transitions occurring in our packings at " " 0:64,
0.68, and 0.72, as shown in Fig. 1(c). The sharp drop
observed at " " 0:64 is related to the onset of crystalliza-
tion, which was detected by a bond order parameter
method (see Ref. [28] and the Supplemental Material
[25]). The two subsequent regimes of compaction at higher
densities (!> 0:68) are in contrast with the monotonic
drop of kg reported in numerical simulations [27]. These
transitions might be connected to global transformations of
the growing crystalline clusters [28,29].
To reveal grain rearrangements associated with these

structural transitions, we now describe packings in terms
of the simplices (generalized tetrahedra) of the Delaunay
partition [inset of Fig. 2(a)] [30]. Since Bernal’s work, it is
known that clusters made of quasiregular tetrahedra play a
major role in the structure and compaction of disordered
packings [6,13,19].
These tetrahedral patterns are revealed within the

Delaunay partition through two working hypotheses.
(i) A simplex is considered dense (or quasiregular) if its
longest edge l is smaller than 5=4 of the diameter d of the
beads that compose the simplex. Dense simplices for
which (# ¼ l& d ( 0:25) d) will be called tetrahedra
[6,13]. (ii) In an assembly of tetrahedra, those who share
a face show a greater mechanical stability than tetrahedra
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FIG. 1 (color online). (a) Tomographic slice of a partially crystallized packing (! " 70:5%) in a spherical container. (b) PDF of the
local volume fluctuations for increasing global volume fraction !. The PDF for ! ¼ 0:598 is fitted by a gamma distribution (red line).
Inset: The Voronoi partition of a local configuration of beads. The bead and the surrounding space closest to its center define the
Voronoi elementary brick. (c) The granular ‘‘specific heat’’ kg ¼ ð !V & VminÞ2="2 versus !. Three successive transitions are
highlighted at " ¼ 0:64, 0.68, 0.72. 34 subsets [26] of roughly 4000 beads extracted from six different packings (indicated by
different markers) have been analyzed: two initial jammed packings obtained by pouring þ four partially crystallized packings. Inset:
Variance "2 of the Voronoi volume versus !.
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Distribu2ons	  of	  Voronoi	  cell	  volumes	  	  
from	  packings	  with	  different	  	  
global	  volume	  frac2ons	  	  ϕ.	  

fig	  from:	  	  
Francois,	  Saadavar,	  et	  al	  	  	  
Phys.	  Rev.	  LeZ.	  111	  (2013).	  
	  
and	  see	  earlier	  work	  by	  	  
Edwards;	  
Aste;	  
Anikeenko	  and	  Medvedev.	  



A	  maximally	  dense	  packing	  is	  built	  from	  layers	  of	  hexagonally	  packed	  spheres	  	  
Locally,	  these	  give	  pores	  related	  to	  regular	  tetrahedra	  and	  octahedra	  

A	  

B	  

C	  

18 A.V. Anikeenko, M.L. Gavrilova, and N.N. Medvedev 

 

Fig. 2.2. (a) – a regular tetrahedron; (b) – a regular quartoctahedron (one edge √2 times loner 
then other ones); (c) – a flat simplex with a shape of a square; (d) – a perfect octahedron. The 
octahedron is divided by infinitesimal perturbations on four quartoctahedra or four quartocta-
hedra and one flat simplex [Vol89].  
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density range [φBernal,φc] [29]. Some crucial features of this
study have recently been observed in 3D realistic packings
(i.e., weakly polydisperse and frictional) by the authors of
the present paper [30]. Here we intend to extend this first
experimental study and draw a more exhaustive picture of the
structure of partially crystallized packings.

In this contribution, we take advantage of a helical x-ray
tomography setup to image 3D packings containing up to
200 000 frictional spheres in both cylindrical and spherical
containers. We employ a simple vibrational protocol to
produce partially crystallized packings. Using state-of-the-art
experimental and numerical techniques, we can study the
evolution of geometrical and mechanical features at the global
and at the grain scale during the disordered-ordered transition.

This paper is organized as follows. Section II describes
the experimental setup and the procedure used to obtain
partially crystallized packings. Section III details the nu-
merical calculations performed on the experimental data in
order to describe the force network with numerical precision
and access the tangential forces. Section IV characterizes
the geometrical transition when the packing density crosses
φBernal = 0.64. Section V focuses on the mechanical features
of the crystallization process in terms of grain contacts and the
evolution of a topological descriptor.

II. EXPERIMENTAL DETAILS

We use monosized acrylic beads (diameter d = 1.00 and
1.62 mm; polydispersity = 0.025 mm), which are packed into
large containers (inner diameter = 66 mm). The beads are
covered with graphite to reduce electrostatic repulsion between
them. Nine packings of beads are prepared in cylindrical and
spherical containers (see details in Table I). Five of them
are produced by simply pouring the beads into the container
following the methods described in [14]. The other four, with a
density φ ≫ φBernal, are generated according to the vibrational
protocol described below.

Our experimental method is based on compaction by
an intense fluidization of the packing [22,31]. A batch of
beads is initially poured into a container forming a random
packing. The container is then placed on a shaker allowing
for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f = 50 Hz; the vertical
component of the acceleration γν is set to be five times

TABLE I. Summary of the experimental packings used in this
study. N is the number of grains used for the analysis, φ is the global
packing density, and D is the grain diameter.

Container N φ D (mm)

1 Cylinder 26498 0.59 1.62
2 Cylinder 25797 0.61 1.62
3 Cylinder 27555 0.60 1.62
4 Cylinder 27665 0.61 1.62
5 Cylinder 156315 0.63 1.00
6 Cylinder 31005 0.66 1.62
7 Cylinder 216722 0.685 1.00
8 Spherical 60205 0.685 1.00
9 Spherical 64042 0.72 1.00

FIG. 1. (Color online) 3D visualization of a partially crystallized
packing containing ≈200 000 beads. Bright regions indicate the
location of disordered aggregates of beads, which have been identified
using the q6 metrics (see Sec. IV).

larger than the horizontal one γh. In these experiments, γν

is constant and set to 2.5g (where g is the gravitational
acceleration). The container is vibrated intensely for 20 s.
The resulting packings show substantial crystallization, with
a global packing density well beyond Bernal’s limit, ranging
from 0.66 to 0.72. The compaction protocol presented here
is robust and allows us to consistently generate partially
crystallized packings irrespective of the packing container.

Figure 1(a) shows a 3D rendering of a partially crystallized
structure. The bright regions correspond to locally disordered
aggregates of beads; a disordered core and the boundaries
between different crystal domains are signified by the bright
regions. Both random and crystalline phases coexist in the
packing, yielding nonuniform packing densities across the
sample. Helical x-ray computed tomography (XCT) is utilized
to digitally access the internal 3D structure of the packings
with a spatial resolution of ≈30 microns [14,22,32–34]. All
our analyses have been carried out over the inner region of
the packings, four sphere diameters away from the container
walls to avoid the boundary effects. These inner regions are
then decomposed into nonoverlapping cubical subsets each
containing 4000 beads. A total of 94 subsets are produced
from all the packings listed in Table I. As a consequence of
structural heterogeneity in our partially crystallized packings
(see Fig. 1), the 4000-bead subsets cover a wide range of
packing densities spanning from φ = 0.58 to φ = 0.73.

III. DEM SIMULATION

The digital representation of each packing is realized using
XCT and a range of postprocessing image analysis techniques.
Each grain in the 3D digital representation (tomogram) is
made of a cluster of ≈19 000 voxels and each tricubic voxel
represents 303 µm of space known as the image resolution. As
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Fig. 2.2. (a) – a regular tetrahedron; (b) – a regular quartoctahedron (one edge √2 times loner 
then other ones); (c) – a flat simplex with a shape of a square; (d) – a perfect octahedron. The 
octahedron is divided by infinitesimal perturbations on four quartoctahedra or four quartocta-
hedra and one flat simplex [Vol89].  
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Fig. 1. (Left) Volume rendering of ∼ 150; 000 sphere-pack in a cylindrical container. (Right) Same image
with the topological distances from a given central sphere highlighted in colours (online version). Movies
are available at the URL: http://www.rsphysse.anu.edu.au/appmaths/ct movies/

Sphere centres. In order to proceed with the analysis of the geometrical and statisti-
cal properties the position of all sphere centres are calculated from the binary images.
Our approach is to !nd the sphere centres by moving a reference sphere (S) throughout
the binarized sphere pack (P) and measuring the local overlap between S and P. This
corresponds to a three-dimensional convolution: P ∗ S. This method is made highly
e"cient by applying the convolution theorem which allow to transform the convolu-
tion into a product in Fourier space: F[P ∗ S] =F[P]F[S], where F represents the
(fast)Fourier Transform. The algorithm proceeds in 4 steps: (1) fast Fourier transform
of the binary image (F[P]); (2) transform the digitized map of the reference sphere
(F[S], chosen with a diameter about 10% smaller than d); (3) perform the direct prod-
uct between these two; (4) inverse-transform of the product: F−1[F[P]F[S]]=P ∗S.
The result is an intensity map of the overlapping between the reference sphere and
the bead pack, where the voxels closer to the sphere centres have a higher intensity.
A threshold on the intensity map, locates the groups of voxels surrounding the sphere
centres. The centre of mass of these grouped voxels is a very good estimation of the
sphere centres in the pack.
Central region. All the analyses reported hereafter have been performed over a

central region (G) at 4 sphere-diameters away from the sample boundaries. Note that
spheres outside G are considered when computing the neighbouring environment of
spheres in G. The two large samples have about NG ∼ 80; 000 spheres in G, whereas
the four smaller have about NG ∼ 20; 000. In Table 1, the number of spheres in this
region (NG) is reported for each sample.
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To create partially crystallized packings, the whole container is placed on a
shaker allowing for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f¼ 50 Hz, the vertical component of the
acceleration gv is set to be five times larger than the horizontal one gh. In these
experiments, gv is constant and set to 2.5g (where g is the gravitational
acceleration). The presence of 3D vibrations enhance crystallization. The container
is vibrated for 20 s (1,000 periods). The resulting packings show substantial
crystallization with a global packing density well beyond Bernal’s limit, ranging
from f¼ 0.66 to f¼ 0.72.

For gv¼ 2.5g, a collective lift off of the packing is observed in the cylindrical
container. In this regime, both compaction and convection are observed57.
The convection phenomenon plays a crucial role in the compaction/crystallization.
Indeed, at lower drive, convection is absent, a very slow compaction is observed but
the packing remains amorphous. In the cylindrical container, it was observed that
confining the packing with a plate placed on its top enhances the crystallization
process (N.B.: the plate fits perfectly in the container and can oscillate freely in the
vertical direction). Measurements of the packing height during the vibration
suggest that the packing remains dense (shows weak dilation) during the process;
in this sense, our method is based on compaction by dense fluidization. The same
observation holds for packings confined in a spherical geometry, nevertheless the
convection streams always appear to be more intense in this case, which results in
the formation of denser packings f40.68.

Tomography and image analysis. A typical experimental packing contains about
100,000 grains and the 3D digital image (tomogram) of the packings has a voxel
size (voxel resolution) of E30 micrometres. The beads are digitally separated by
using a set of algorithms developed at ANU58,59. For a 1 mm diameter grain, each
grain is represented by a cluster of (4/3)p(33/2)3E19,000 voxels and each grain’s

surface corresponds to a cluster of 4p(33/2)2E3,400 voxels. A grain centre is the
geometric centroid of the 19,000 voxel coordinates that belong to the grain, that is,
the grain centre is an average quantity computed from these large clusters of voxels
that represent each grain. As a consequence of the large voxel representation of a
grain’s volume, the resolution on the grain centre determination is extremely high,
that is, E10" 3 micrometres. The precision (typical error) on the centroid
determination is related to the segmentation of the voxels that cover the surface of
a grain. For such a simple biphasic material, the segmentation process using our in-
house software is very robust and it ensures that the precision of our measurements
is comparable to our resolution within a factor of order unity58. To further assess
the robustness of our results, we have performed topological analysis on
experimental packing structures that have been postprocessed and relaxed using a
discrete element method code12,13. PD2 obtained on these numerically relaxed
structures are identical to the experimental one.

As a consequence of the large voxel representation of a grain’s surface, we are
able to determine the average radius of a grain with a 5# 10" 2 mm resolution. This
radius has to be understood as the effective radius of an equivalent perfect sphere.
By measuring the distribution of grain radii, we found that this distribution shows
an average diameter of 1 mm and a width of 0.05 mm. In the main text, the width
of this distribution is expressed as a 2.5% grain polydispersity.

PH: mathematical formulation. The starting point for computing homology is a
complex, C, essentially a collection of building blocks whose union is the shape of
interest. In a simplicial complex, the building blocks are points, edges, triangles,
tetrahedra and higher dimensional simplices.

A k-chain is a formal sum of k-dimensional simplices and the boundary
operator is a linear map from k-chains to (k" 1)-chains defined by adding up the
(k" 1)-dimensional faces of the k-simplices in the k-chain. The ‘adding’ is done
with respect to some coefficient group; in practical applications, this is usually Z2,
addition modulo 2. A k-cycle is a chain whose boundary is empty (the sum of its
faces cancel out). Two k-cycles are said to be homologous if their difference is the
boundary of a (kþ 1)-dimensional chain. The homology groups Hk encode these
equivalence classes of k-cycles.

H0 represents the connected components of the simplicial complex. H1 encodes
equivalence classes of 1-cycles (that is, loops). Finally, H2, is the equivalence classes
of 2-cycles (that is, cavities).

PH extends this formalism from a single simplicial complex to a growing
sequence of nested complexes called a filtration: Caf ga2R . The complexes satisfy
Ca % Cb whenever aob. The filtration parameter a can be a length scale or some
other scalar ordering parameter. When a k-simplex is added to a complex in the
filtration, all its faces must already be present and so the new simplex must either
create a new k-cycle or fill in a ‘hole’ and make the existing (k" 1)-cycle formed by
its faces into a boundary. By tracking homologous cycles as simplices are added to
the filtration, PH is able to pair the k-simplex that creates a k-cycle with the
(kþ 1)-simplex that fills it in and destroys it. Each PH class therefore has two
values of the filtration parameter associated with it: a birth value and a death value,
as well as the actual birth and death simplices. Some cycles may be present in the
final simplicial complex, these are called essential cycles and are assigned a death
value of infinity. It is common practice to represent this information in a
persistence diagram for each dimension of homology. PDk contains all pairs (b, d),
brd, associated with PH in dimension k.

The simplicial complex we use for the bead packing data is built from the DT as
follows. The bead packing data are specified by coordinates for the centre of each
bead and its radius as extracted from micro-CT images. Recall that the definition of
the DT is the union of all tetrahedra whose vertices are four data points such that
their circumsphere contains no other data point. The simplicial complex contains
all these tetrahedra, their triangular faces, edges and vertices. A length-scale
parameter, a, is introduced to define subsets of the DT called alpha shapes, A(a),
that capture the topology of the union of balls of radius a growing around each
bead centre, X(a)¼

S
B(x, a),60,61. The alpha shape contains all tetrahedra whose

circumradius rra and all lower dimensional simplices with circumradius less than
alpha, whose circumsphere is also empty (that is, contains no other data point).
Note that this empty circumsphere condition is not automatically satisfied by the
lower-dimensional faces of Delaunay tetrahedra. For example, the edge opposite an
obtuse angle in a triangle will have a circumsphere that contains its opposite vertex.

The filtration is the growing sequence of alpha shapes A(a) as a increases from 0
to N. Since the bead pack has a finite number of beads, the DT is finite and the
topology of A(a) changes at a discrete set of values of a. If we assume that the bead
pack is mono-disperse with bead radius¼ r, then for 0oaor, A(a) is simply the set
of data points at the bead centres. For a4r, bead contacts are resolved and A(a)
becomes connected, initially with many holes that are then filled in as a increases.
For a perfectly mono-disperse bead pack with no ‘rattlers’, all points in PD0 have
birth¼ 0 and death¼ r. Points in PD1 have all birth values bZr. One-cycles with
b¼ r are generated by three or four beads in contact forming a ring; those with b4r
are formed by triangular faces of Delaunay tetrahedra where not all four beads are in
contact. PD2 carries the most interesting signature of structure for the disordered
and partially crystallized bead packings. Each point in PD2 represents a kind of ‘pore’
in the interstices between the beads. The simplest and smallest pore is that formed
inside four beads close packed as a regular tetrahedron. This pore is born when a
reaches the circumradius of an equilateral triangle and dies when
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Figure 7 | Numerical simulation of the dynamics of the order–disorder
transition of a bead packing under shear. (a) Packing density versus time
(expressed in inverse shear rate units). (b) Snapshot of the numerically
generated packings as it gets disordered. (c–f) Temporal evolution of
PD2 at different packing density ranging from f¼0.72 to f¼0.63.
These diagrams have been computed over 46,000 beads.
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To create partially crystallized packings, the whole container is placed on a
shaker allowing for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f¼ 50 Hz, the vertical component of the
acceleration gv is set to be five times larger than the horizontal one gh. In these
experiments, gv is constant and set to 2.5g (where g is the gravitational
acceleration). The presence of 3D vibrations enhance crystallization. The container
is vibrated for 20 s (1,000 periods). The resulting packings show substantial
crystallization with a global packing density well beyond Bernal’s limit, ranging
from f¼ 0.66 to f¼ 0.72.

For gv¼ 2.5g, a collective lift off of the packing is observed in the cylindrical
container. In this regime, both compaction and convection are observed57.
The convection phenomenon plays a crucial role in the compaction/crystallization.
Indeed, at lower drive, convection is absent, a very slow compaction is observed but
the packing remains amorphous. In the cylindrical container, it was observed that
confining the packing with a plate placed on its top enhances the crystallization
process (N.B.: the plate fits perfectly in the container and can oscillate freely in the
vertical direction). Measurements of the packing height during the vibration
suggest that the packing remains dense (shows weak dilation) during the process;
in this sense, our method is based on compaction by dense fluidization. The same
observation holds for packings confined in a spherical geometry, nevertheless the
convection streams always appear to be more intense in this case, which results in
the formation of denser packings f40.68.

Tomography and image analysis. A typical experimental packing contains about
100,000 grains and the 3D digital image (tomogram) of the packings has a voxel
size (voxel resolution) of E30 micrometres. The beads are digitally separated by
using a set of algorithms developed at ANU58,59. For a 1 mm diameter grain, each
grain is represented by a cluster of (4/3)p(33/2)3E19,000 voxels and each grain’s

surface corresponds to a cluster of 4p(33/2)2E3,400 voxels. A grain centre is the
geometric centroid of the 19,000 voxel coordinates that belong to the grain, that is,
the grain centre is an average quantity computed from these large clusters of voxels
that represent each grain. As a consequence of the large voxel representation of a
grain’s volume, the resolution on the grain centre determination is extremely high,
that is, E10" 3 micrometres. The precision (typical error) on the centroid
determination is related to the segmentation of the voxels that cover the surface of
a grain. For such a simple biphasic material, the segmentation process using our in-
house software is very robust and it ensures that the precision of our measurements
is comparable to our resolution within a factor of order unity58. To further assess
the robustness of our results, we have performed topological analysis on
experimental packing structures that have been postprocessed and relaxed using a
discrete element method code12,13. PD2 obtained on these numerically relaxed
structures are identical to the experimental one.

As a consequence of the large voxel representation of a grain’s surface, we are
able to determine the average radius of a grain with a 5# 10" 2 mm resolution. This
radius has to be understood as the effective radius of an equivalent perfect sphere.
By measuring the distribution of grain radii, we found that this distribution shows
an average diameter of 1 mm and a width of 0.05 mm. In the main text, the width
of this distribution is expressed as a 2.5% grain polydispersity.

PH: mathematical formulation. The starting point for computing homology is a
complex, C, essentially a collection of building blocks whose union is the shape of
interest. In a simplicial complex, the building blocks are points, edges, triangles,
tetrahedra and higher dimensional simplices.

A k-chain is a formal sum of k-dimensional simplices and the boundary
operator is a linear map from k-chains to (k" 1)-chains defined by adding up the
(k" 1)-dimensional faces of the k-simplices in the k-chain. The ‘adding’ is done
with respect to some coefficient group; in practical applications, this is usually Z2,
addition modulo 2. A k-cycle is a chain whose boundary is empty (the sum of its
faces cancel out). Two k-cycles are said to be homologous if their difference is the
boundary of a (kþ 1)-dimensional chain. The homology groups Hk encode these
equivalence classes of k-cycles.

H0 represents the connected components of the simplicial complex. H1 encodes
equivalence classes of 1-cycles (that is, loops). Finally, H2, is the equivalence classes
of 2-cycles (that is, cavities).

PH extends this formalism from a single simplicial complex to a growing
sequence of nested complexes called a filtration: Caf ga2R . The complexes satisfy
Ca % Cb whenever aob. The filtration parameter a can be a length scale or some
other scalar ordering parameter. When a k-simplex is added to a complex in the
filtration, all its faces must already be present and so the new simplex must either
create a new k-cycle or fill in a ‘hole’ and make the existing (k" 1)-cycle formed by
its faces into a boundary. By tracking homologous cycles as simplices are added to
the filtration, PH is able to pair the k-simplex that creates a k-cycle with the
(kþ 1)-simplex that fills it in and destroys it. Each PH class therefore has two
values of the filtration parameter associated with it: a birth value and a death value,
as well as the actual birth and death simplices. Some cycles may be present in the
final simplicial complex, these are called essential cycles and are assigned a death
value of infinity. It is common practice to represent this information in a
persistence diagram for each dimension of homology. PDk contains all pairs (b, d),
brd, associated with PH in dimension k.

The simplicial complex we use for the bead packing data is built from the DT as
follows. The bead packing data are specified by coordinates for the centre of each
bead and its radius as extracted from micro-CT images. Recall that the definition of
the DT is the union of all tetrahedra whose vertices are four data points such that
their circumsphere contains no other data point. The simplicial complex contains
all these tetrahedra, their triangular faces, edges and vertices. A length-scale
parameter, a, is introduced to define subsets of the DT called alpha shapes, A(a),
that capture the topology of the union of balls of radius a growing around each
bead centre, X(a)¼

S
B(x, a),60,61. The alpha shape contains all tetrahedra whose

circumradius rra and all lower dimensional simplices with circumradius less than
alpha, whose circumsphere is also empty (that is, contains no other data point).
Note that this empty circumsphere condition is not automatically satisfied by the
lower-dimensional faces of Delaunay tetrahedra. For example, the edge opposite an
obtuse angle in a triangle will have a circumsphere that contains its opposite vertex.

The filtration is the growing sequence of alpha shapes A(a) as a increases from 0
to N. Since the bead pack has a finite number of beads, the DT is finite and the
topology of A(a) changes at a discrete set of values of a. If we assume that the bead
pack is mono-disperse with bead radius¼ r, then for 0oaor, A(a) is simply the set
of data points at the bead centres. For a4r, bead contacts are resolved and A(a)
becomes connected, initially with many holes that are then filled in as a increases.
For a perfectly mono-disperse bead pack with no ‘rattlers’, all points in PD0 have
birth¼ 0 and death¼ r. Points in PD1 have all birth values bZr. One-cycles with
b¼ r are generated by three or four beads in contact forming a ring; those with b4r
are formed by triangular faces of Delaunay tetrahedra where not all four beads are in
contact. PD2 carries the most interesting signature of structure for the disordered
and partially crystallized bead packings. Each point in PD2 represents a kind of ‘pore’
in the interstices between the beads. The simplest and smallest pore is that formed
inside four beads close packed as a regular tetrahedron. This pore is born when a
reaches the circumradius of an equilateral triangle and dies when
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Figure 7 | Numerical simulation of the dynamics of the order–disorder
transition of a bead packing under shear. (a) Packing density versus time
(expressed in inverse shear rate units). (b) Snapshot of the numerically
generated packings as it gets disordered. (c–f) Temporal evolution of
PD2 at different packing density ranging from f¼0.72 to f¼0.63.
These diagrams have been computed over 46,000 beads.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15082

8 NATURE COMMUNICATIONS | 8:15082 | DOI: 10.1038/ncomms15082 | www.nature.com/naturecommunications

Numerical	  simula2ons	  
of	  a	  
crystalline	  packing	  
subject	  to	  	  
shear-‐induced	  
“mel2ng”	  show	  the	  
same	  deforma2on	  
pathways.	  	  	  	  	  



A	  perfect	  crystalline	  packing	  	  
has	  the	  ra2o	  	  
tetra	  :	  oct	  of	  	  2:1	  	  

regular	  tet	  and	  oct	  pores	  



summary	  of	  sphere	  packing	  analysis	  

PD2	  captures	  the	  distribu2on	  of	  local	  pore	  
configura2ons.	  
	  
It	  has	  revealed	  pathways	  of	  local	  deforma2ons	  
involved	  in	  the	  transi2on	  from	  crystalline	  to	  less-‐
dense	  packings.	  	  
	  
BUT:	  Granular	  packing	  is	  much	  more	  than	  geometry.	  

Saadavar,	  Takeuchi,	  VR,	  Francois,	  Hiraoka	  (2017)	  
Nature	  Communica^ons,	  vol.	  8.	  	  
	  
VR,	  Turner	  	  (2016)	  	  	  Physica	  D	  vol.	  334.	  	  
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density range [φBernal,φc] [29]. Some crucial features of this
study have recently been observed in 3D realistic packings
(i.e., weakly polydisperse and frictional) by the authors of
the present paper [30]. Here we intend to extend this first
experimental study and draw a more exhaustive picture of the
structure of partially crystallized packings.

In this contribution, we take advantage of a helical x-ray
tomography setup to image 3D packings containing up to
200 000 frictional spheres in both cylindrical and spherical
containers. We employ a simple vibrational protocol to
produce partially crystallized packings. Using state-of-the-art
experimental and numerical techniques, we can study the
evolution of geometrical and mechanical features at the global
and at the grain scale during the disordered-ordered transition.

This paper is organized as follows. Section II describes
the experimental setup and the procedure used to obtain
partially crystallized packings. Section III details the nu-
merical calculations performed on the experimental data in
order to describe the force network with numerical precision
and access the tangential forces. Section IV characterizes
the geometrical transition when the packing density crosses
φBernal = 0.64. Section V focuses on the mechanical features
of the crystallization process in terms of grain contacts and the
evolution of a topological descriptor.

II. EXPERIMENTAL DETAILS

We use monosized acrylic beads (diameter d = 1.00 and
1.62 mm; polydispersity = 0.025 mm), which are packed into
large containers (inner diameter = 66 mm). The beads are
covered with graphite to reduce electrostatic repulsion between
them. Nine packings of beads are prepared in cylindrical and
spherical containers (see details in Table I). Five of them
are produced by simply pouring the beads into the container
following the methods described in [14]. The other four, with a
density φ ≫ φBernal, are generated according to the vibrational
protocol described below.

Our experimental method is based on compaction by
an intense fluidization of the packing [22,31]. A batch of
beads is initially poured into a container forming a random
packing. The container is then placed on a shaker allowing
for both vertical and horizontal vibrations. The vibrations are
sinusoidal with a frequency set to f = 50 Hz; the vertical
component of the acceleration γν is set to be five times

TABLE I. Summary of the experimental packings used in this
study. N is the number of grains used for the analysis, φ is the global
packing density, and D is the grain diameter.

Container N φ D (mm)

1 Cylinder 26498 0.59 1.62
2 Cylinder 25797 0.61 1.62
3 Cylinder 27555 0.60 1.62
4 Cylinder 27665 0.61 1.62
5 Cylinder 156315 0.63 1.00
6 Cylinder 31005 0.66 1.62
7 Cylinder 216722 0.685 1.00
8 Spherical 60205 0.685 1.00
9 Spherical 64042 0.72 1.00

FIG. 1. (Color online) 3D visualization of a partially crystallized
packing containing ≈200 000 beads. Bright regions indicate the
location of disordered aggregates of beads, which have been identified
using the q6 metrics (see Sec. IV).

larger than the horizontal one γh. In these experiments, γν

is constant and set to 2.5g (where g is the gravitational
acceleration). The container is vibrated intensely for 20 s.
The resulting packings show substantial crystallization, with
a global packing density well beyond Bernal’s limit, ranging
from 0.66 to 0.72. The compaction protocol presented here
is robust and allows us to consistently generate partially
crystallized packings irrespective of the packing container.

Figure 1(a) shows a 3D rendering of a partially crystallized
structure. The bright regions correspond to locally disordered
aggregates of beads; a disordered core and the boundaries
between different crystal domains are signified by the bright
regions. Both random and crystalline phases coexist in the
packing, yielding nonuniform packing densities across the
sample. Helical x-ray computed tomography (XCT) is utilized
to digitally access the internal 3D structure of the packings
with a spatial resolution of ≈30 microns [14,22,32–34]. All
our analyses have been carried out over the inner region of
the packings, four sphere diameters away from the container
walls to avoid the boundary effects. These inner regions are
then decomposed into nonoverlapping cubical subsets each
containing 4000 beads. A total of 94 subsets are produced
from all the packings listed in Table I. As a consequence of
structural heterogeneity in our partially crystallized packings
(see Fig. 1), the 4000-bead subsets cover a wide range of
packing densities spanning from φ = 0.58 to φ = 0.73.

III. DEM SIMULATION

The digital representation of each packing is realized using
XCT and a range of postprocessing image analysis techniques.
Each grain in the 3D digital representation (tomogram) is
made of a cluster of ≈19 000 voxels and each tricubic voxel
represents 303 µm of space known as the image resolution. As
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