Topological Data Analysis with applications to porous and granular materials

Vanessa Robins Applied Mathematics, RSPE, ANU

ARC Future Fellowship FT140100604

ARC Discovery Projects DP1101028, DP0666442

granular and porous materials

Clashach sandstone

Mt Gambier limestone

Want accurate geometric and topological characterisation from x-ray micro-CT images

- pore and grain size distributions, structure of immiscible fluid distributions
- adjacencies between elements, network models

Ottawa sand

Understand how these quantities correlate with physical properties such as

• diffusion, permeability, mechanical response to load.

Topology from data?

- Challenge: compute topological invariants from finite noisy data with structure on different length-scales.
 - e.g. connected components (clustering)
 - Euler characteristic, Betti numbers, homology groups.
- Requirements:
 - a cell complex
 - efficient algorithms
 - statistical methods for the analysis of topological invariants
- Applications:
 - Spherical bead packings and other granular and porous materials
 - Glass transition, Materials informatics (for MOFs, etc.)
 - Histology image analysis, protein structure, distribution of galaxies in the universe, dynamical systems/ time series analysis,

How to build a complex

- Points are $X = \{x_1, x_2, x_3, ..., x_n\}$ in (*M*,*d*) a metric space
- The Rips complex $R(X, \alpha)$ has a k-simplex $[a_0, a_1, ..., a_k]$ for a_i in X, if $d(a_i, a_j) < 2\alpha$ for all pairs i, j = 0, ..., k.
- The Cech complex $C(X, \alpha)$ has a k-simplex $[a_0, a_1, ..., a_k]$ for a_i in X, when $\Pi B(a_i, \alpha)$ is non-empty.
- Cech complex is homotopic to the union of balls so it captures the geometry of X more accurately, but Rips is simpler to build.

How to build a complex

- If your metric space is R², R³, or R⁴, the best geometric complex is the Alpha Shape, A(X, α). [H. Edelsbrunner (1983,1994,1995)].
- $A(X, \alpha)$ is a subset of the Delaunay Triangulation.
- A k-simplex [a₀, a₁, ..., a_k] is in A(X, α) if its circumsphere is empty and circumradius < α.

Simplicial homology

- *K* is a simplicial complex.
- The *k*-th chain group *C_k(K, G)* is the free abelian group with coefficients *G*, generated by the oriented k-simplices of *K*.
- The boundary operator maps each k-simplex onto the sum of the (k-1)simplices that are its faces.

$$\partial_k : C_k \longrightarrow C_{k-1} \qquad \qquad \partial_{k-1}\partial_k = 0$$

• The image of
$$\,\partial_k$$
 is the boundary group, ${\it B}_{\scriptstyle k{ ext{-}1}}$

- The kernel of ∂_k is the cycle group, Z_k
- The homology group is $H_k = Z_k / B_k$
- The structure theorem for finitely generated abelian groups tells us that if G = Z, (integers) then

$$H_k(K,Z) = \underbrace{Z \oplus \ldots \oplus Z}_{\beta_k \text{ copies}} \oplus Z_{t1} \oplus \ldots \oplus Z_{tm}$$

• β_k is the Betti number and t_i are the torsion coefficients

 $\beta_0=9, \beta_1=0$

β₀=3, β₁=2

 β_0 =1, β_1 =2

Betti number functions of $A(X,\alpha)$ are not stable wrt small changes in point locations.

But persistent homology intervals are.

Cohen-Steiner, Edelsbrunner, Harer (2007)

Fractal examples

b0 is number of components

b1 is number of holes

Problem with counting holes that do not persist for smaller radii.

Persistent homology

Let Xa = U B(x,a) so $i : Xa \hookrightarrow Xb$ for a < b.

The cell complexes, R(X,a), C(X,a) and A(X,a) also have this inclusion property. Homology is a functor so *i* becomes a group homomorphism:

$$i*: H_k(Xa) \to H_k(Xb)$$

The persistent homology group is the image of *i** :

 $H_k(a,b) = i * (H_k(Xa)) = Z_k(Xa) / (B_{k+1}(Xb) \cap Z_k(Xa))$

[VR Topology Proceedings 1999]

Persistent homology

Algorithmic definition

When adding a single k-simplex, σ^k , to a cell complex that already contains all faces of σ^k exactly one of two changes in topology can happen:

- σ^k creates a k-cycle (it is marked +ve)
- σ^k makes a (k-1)-cycle a boundary (it is marked –ve)

[Delfinado and Edelsbrunner, 1993]

A persistent homology class is found by pairing each –ve *k*-simplex with the most recently added and as-yet-unpaired +ve (*k*-1)-simplex in its boundary class. [Edelsbrunner, Letscher, Zomorodian, DCG 2002].

Persistent homology

- A more algebraically sophisticated view of persistent homology is given by G. Carlsson (e.g. AMS Bulletin, 2009).
- A filtration is a directed space:

$$X_0 \subset X_1 \subset X_2 \cdots \subset X_n$$

- The functorial property of homology means the induced maps on homology groups also form a directed space.
- If the coefficient group is a field (e.g. R, or Z₂) we can form a graded module of this homology sequence and an algebraic structure theorem tells us that

$$PH_k(X) = \bigoplus_{i=1}^{k} I[b_i, d_i]$$

- This collection of intervals is called the barcode.
- If we plot the (b,d) values on 2D axes, it is called the persistence diagram.
- The function $\beta_k(a,b) = rank H_k(a,b)$ is the persistent homology rank function

spherical bead packing

Disordered packing (random close pack, maximally jammed) Bernal limit has vol frac Φ = 64% Well-defined distribution of local volumes

Partially crystallized packing, Φ =70% a fully crystallized packing has Φ =74% (i.e layers of hexagonally close packed spheres)

data from M Saadatfaar, ANU x-ray CT of ~150K beads, (1.00 +/- 0.025)mm diameter.

spherical bead packing

Distributions of Voronoi cell volumes from packings with different global volume fractions ϕ .

fig from: Francois, Saadatfar, et al *Phys. Rev. Lett.* **111** (2013).

and see earlier work by Edwards; Aste; Anikeenko and Medvedev.

spherical bead packing

A maximally dense packing is built from layers of hexagonally packed spheres Locally, these give pores related to regular tetrahedra and octahedra

Persistence diagrams for a subset (14mm³) of the partially crystallised packing with high volume fraction = 72%.

axis units now normalised by bead radius = 0.5mm

Persistence diagrams for a subset (14mm^3) of the random close packing with volume fraction = 63%.

the plots are 2D histograms where colour is log10 of the number of (b,d) points in a small box

axis units normalised by bead radius = 0.5mm

spherical bead packing PD2

spherical bead packing PD2

spherical bead packing PD2

PD2 of partially crystallised packing $\phi = 0.70$

Saadatfar, Takeuchi, VR, Francois, Hiraoka, "Pore configuration landscape of granular crystallization," *Nature Communications*, May 2017.

simulation data

regular tet and oct pores

summary of sphere packing analysis

