

Two-dimensional Crystallography

via topology and orbifolds

Many 3D structures are also 2D non-euclidean patterns!

manifolds and Euler characteristic

 construction of manifolds from caps , pants and cross caps

• Gaussian curvature of manifolds

manifolds as orbifolds: wallpaper

faces	4
-edges	-6
vertices	4
Sum	2

Faces-Edges+Vertices =6-12+8=2

Faces-Edges+Vertices =12-24+14=2

The face, edge, vertex sum depends on topology only:

$F - E + V = \chi$ fEuler characteristic

Note: Faces must be topological discs

"toroidal polyhedra"

Faces-Edges+Vertices 32-64+32=0

Manifold topology sets the Euler characteristic χ

Infinite 3-periodic (crystal) surface:

"infinite polyhedron"

$\chi = -\infty$

Per cubic unit cell:

cubic unit cell:	
	12
-edges	-24
vertices	8
Sum	-4

Pants decomposition for a higher-genus manifold:

Build all 'nice' manifolds from pairs of pants:

Euler characteristic of pants:

$$\chi_{pants} = -1$$

.....and caps:

V=2 ; E = 3; F=2

Euler characteristic of 'nice' manifolds:

$\chi = \# pants.\chi_{pants} + \#caps.\chi_{cap}$

$$\chi = (\# \ caps - \# \ pants)$$

 $\chi = 2$

2 pants, 2 caps

<u>GENUS of 'nice' manifolds, "g":</u>

$\chi = (\# \ caps - \# \ pants)$

$$g=1-rac{\chi}{2}$$

$$g = 1 + \frac{\#pants - \# caps}{2}$$

Manifold topology sets the Euler characteristic χ and genus

Euler characteristic describes manifold topology. $F - E + V = \chi$

Genus describes number of loops or "handles"

$$g = 1 - \frac{\chi}{2}$$

8 pants, 6 caps: $\chi = -2$, genus=2

In fact, any closed orientable manifold can be cut into pants only...

Question: What is minimum # cuts needed to build an unbounded genus-g manifold?

$$g = 1 + \frac{\#pants - \# caps}{2}$$

So nice manifold of genus g has:

$$2g-2$$
 pairs of pants

each pants has 3/2 closed loops..... So, 3(g-1) cuts needed **Theorem 3-4.** A hyperbolic Riemann surface R of genus g always contains a loop system of 3g-3 disjoint simple closed geodesics. Regardless of which loop system we choose, cutting R along the geodesics in the system always decomposes R into 2g-2 pairs of pants.

e.g. genus=2, 2 pants.

© Kathy Paur; MIT Undergraduate Journal of Mathematics

REMARK: Each loop is independent, so 3(g-1) loop-lengths

add Dehn twist angle $(2\pi N)$:

Figure 4-1. Dehn twisting.

....3(g-1) angles

Uniform curvature manifold defined by 6(g-1) parameters

(Fenchel-Nielsen coordinates)

'nice' manifolds with punctures:

 $\chi = \# pants.\chi_{pants} + \# caps.\chi_{cap} + \# holes.\chi_{holes}$

= #caps - # pants - # holes

• orientable (nice) vs. non-orientable (nasty) surfaces

Möbius strip

http://www.cs.technion.ac.il/~gershon/EscherForReal/MoebiusAnt.gif

1 Face 3 Edges 2 Vertices

$$F-E+V=0$$

Nasty manifolds can have same Euler characteristic as nice manifolds, but topologically different

(vertices and edges are shared with adjacent modules):

Moebius band is topologically identical to cross-cap!

another nasty manifold: Klein "bottle"

1 Face 2 Edges 1 Vertex

F-E+V=0

 $\chi = 0$

A half-Klein bottle is a Möbius band

Zip two Möbius bands together along boundary: form a Klein bottle! Non-orientable manifolds.....

Cannot be built from pants and caps, instead, use pants, caps and <u>cross-caps</u>

A simpler decomposition of orientable (nice) manifolds:

use handles and caps

ANY nice manifold = sphere + handles (+ boundary)

sphere + 3 handles (genus 3)

handle = 1 pant + 1 cap

To build any nice manifold:

1. Start with a sphere (2 caps)

To build any nice manifold:

1. Start with a sphere (2 caps)

2. Add handles (2 punctures, 1 pant + 1 cap) $\chi_{handle} = 2\chi_{puncture} + \chi_{pant} + \chi_{cap} = -2 - 1 + 1 = -2$ To build any nice manifold:

1. Start with a sphere (2 caps)

$$\chi_{sphere} = 2$$

2. Add <u>handles</u> (2 punctures, 1 pant + 1 cap) $\chi_{handle} = 2\chi_{puncture} + \chi_{pant} + \chi_{cap} = -2 - 1 + 1 = -2$

 $\chi_{handle} = -2$

3. Add boundary punctures

 $\chi_{boundary} = -1$

ANY nasty manifold= sphere + handles +xcaps (+ boundary)

e.g. Boys surface = sphere + xcap

To build any manifold:

1. Start with a sphere (2 caps)

$$\chi_{sphere} = 2$$

2. Add handles (2 punctures, 1 pant + 1 cap) $\chi_{handle} = 2\chi_{puncture} + \chi_{pant} + \chi_{cap} = -2 - 1 + 1 = -2$

 $\chi_{handle} = -2$

4. Add boundary punctures

 $\chi_{boundary} = -1$

<u>ANY manifold = sphere + handles + xcaps + boundary!</u>

$$\chi = 2 - 2(\# handles) - (\# x caps) - (\# boundaries)$$

modules	symbol	
handle	0	
cross-cap	X	
boundary	*	remove a

 $\chi = 2 - 2(\# handles) - (\# x caps) - (\# boundaries)$

Notice that manifold features (handles, boundaries, xcaps) induce negative χ

Summarising:

Manifold topology is independent of shape details

Quantify topology by

- nice: pants, caps and holes only
 ★2-sided, orientable
- *nasty*: pants, caps, holes & crosscaps
 ★ I-sided, non-orientable

 ${igsirplus}$ Characterise <u>topology</u> by <u>value</u> of χ

Characterise geometry by sign of χ

Topology (χ) is related to Gaussian curvature (K) Gauss-Bonnet Theorem: valid for any compact manifold

::Gauss-Bonnet Theorem for a boundary-free manifold:: <u>"average" geometry from topology</u>

$\int \int K da = \text{solid angle traced out by}$ normals to surface

Figure 1.18. Planar vs. solid angle construction. A planar angle θ is equal to the perimeter of a circular arc of radius one swept out by a radial edge. The solid angle is the area of the region on the unit sphere traced out by a radial edge that sweeps through the entire solid angle. The vertex angles of the resulting spherical polygon (in this case, a triangle) are equal to the dihedral angles between adjoining faces, β_i.

(include sign of solid angle: "Gauss map")

Area of pole region = integral (Gauss) curvature

Figure 1.22. The pole region on the sphere due to a {n, z} polyhedral vertex. The region is a face of a spherical polyhedron (cf. Figure 1.20, whose vertices are the pole figures of all the (z) faces that contain that vertex.

Area of pole region of complete polyhedron = 4π

$$\int \int K da = 2\pi \chi \quad \Longrightarrow \quad < K >= \frac{2\pi \chi}{Area}$$

Assume intrinsic homogeneity: Constant K (i.e. no curvature variations)

$$\int \int K da = K.Area$$

sign of solid angle:

Positive Gaussian curvature

Negative Gaussian curvature

< K >> 0 < K >= 0 < K >< 0

elliptic

euclidean

hyperbolic

... a torus has $\chi=0$ ie. it is - on average - flat!

exactly equal contributions of + and -Gaussian curvature

Gauss curvature

... a torus has one handle

a tritorus has three handles.....

$$\chi = 2 - 2(\# handles) - (\# x caps) - (\# boundaries)$$

$$\chi = -4$$

$$< K > = rac{2\pi\chi}{Area}$$

... so a tritorus is <u>hyperbolic</u>, with negative <K>

... a genus-3 tritorus is -- on average -- HYPERBOLIC

... an infinite genus 3-periodic surface is -- on average --**HYPERBOLIC**

Conway symbol: 00.....

local homogeneous 2D **flat** geometry can be globally extended in 3D space:

euclidean plane = normal plane

local homogeneous 2D elliptic geometry can be globally extended in 3D space:

elliptic plane = sphere

2D hyperbolic space is much "bigger" than 2D flat space

e.g. hyperbolic: area of a disc ~ exponential(radius)

flat: area of a disc \sim (radius)²

We represent the hyperbolic plane by the Poincaré model

(Hyper)Parallel lines

Intersecting lines

what are these manifolds?

which ones are nice (oriented), nasty?

Moebius strip

how many caps? xcaps? handles? boundaries?

what are their Conway symbols?

Moebius strip

what is their geometry?

what is their geometry?

Let's build the universal cover of these manifolds...

The universal covers tile the euclidean plane, E^2

covers and universal cover of manifolds

Exactor 1.4.2.1 The w-shorted cyclic cover of F_2 is defined by taking a coaxial copies of F_2 , cutting them through one of the handles (Figure 112), then identifying the boundaries of the cuts cyclically (ith on the ligh with (i + 1)th on the right, wh on the left with first on the right). By computing the Euler characteristic of the cover, show that it can be an exientable surface of arbitrary genus > 1, if n is suitably chosen.

"Classical Topology and Combinatorial Group Theory" John Stillwell

build the "universal cover" of o:

universal cover - E2 tiled by (4,4)

build the "universal cover" of oo:

universal cover - H2 tiled by (8,8)!

Moebius strip

** = pm wallpaper!

Conway symbols describe "orbifolds"

Orbifolds describe symmetric patterns