Two-dimensional Crystallography

via topology and orbifolds
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Many 3D structures are also 2D non-euclidean patterns!




manifolds and Euler characteristic

construction of manifolds from caps , pants
and cross caps

Gaussian curvature of manifolds

manifolds as orbifolds:'wallpaper



faces 4

-edges -6

vertices 4

Sum 2




Faces-Edges+Vertices

/ 7 =6-12+8=2
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Faces-Edges+Vertices

— =12-24+14=2




The face,edge,vertex sum depends on topology only:

F—B+¥=X

Euler characteristic



“toroidal polyhedra”

Faces-Edges+Vertices

€ 32.64+32=0



Manifold topology sets the Euler characteristic X

X:Z
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Infinite 3-periodic (crystal) surface:
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“infinite polyhedron”
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Per cubic unit cell:




cubic

unit cell:
|2
-edges -24
vertices 8
Sum -4













Pants decomposition for a higher-genus manifold:




Build all ‘nice” manifolds from pairs of pants:




Euler characteristic of pants:

V=12/2=6 ;E = 6+6/2=9; F=2




..... and caps:

V=2 E = 3;F=2



Euler characteristic of ‘nice’ manifolds:

X = o pant5°Xpants T #CapS-Xcap

X = (# caps — # pants)
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2 pants, 4 caps




AP

2 pants, 2 caps




3 pants, 3 caps



GENUS of ‘nice’ manifolds, g’

X = (# caps — # pants)

X
=1~
I >

#pants — # caps
2

g=1+



Manifold topology sets the Euler characteristic X and genus

X = 2

genus=0

A8 e - X = —2

genus=| \“/,f' S | &" / genus=2
. D "




tuler characteristic describes manifold topology.
F—E+V=x

describes number of loops or “handles”

X
2

g=1



8 pants, 6 caps: X = —2 , genus=2




In fact, any closed orientable manifold can be cut into pants
only...

Question: What is minimum # cuts needed to build an
unbounded genus-g manifold?



- #pants — # caps
| 2

So nice manifold of genus g has:

g=1

29 — 2 pairs of pants

each pants has 3/2 closed loops.....

So, 3(g-1) cuts needed



Theorem 3-4. A hyperbolic Riemann surface R of genus g always contains a
loop system of 3g — 3 disjoint simple closed geodesics. Regardless of which loop
system we choose, cutting R along the geodesics in the system always decomposes

R into 2g — 2 pairs of pants.

e.g. genus=2, 2 pants.

© Kathy Paur; MIT Undergraduate Journal of Mathematics



REMARK: Each loop is independent, so 3(g-1) loop-lengths

add Dehn twist angle (2TTN):

Figure 4-1. Dehn twisting.

...3(g-1) angles

Uniform curvature manifold defined by 6(g-1) parameters

(Fenchel-Nielsen coordinates)



‘nice” manifolds with punctures:

= %
,remove a cap \‘— ”

to make a n
X = # Pants.Xpants + F#CaPS.Xcap + F#holes. X holes

puncture

X:

= #caps — # pants — # holes



! ® orientable (nice) vs. non-orientable (nasty) surfaces §




Mobius strip

.11/~gershon/EscherForReal/MoebiusAnt.qgif

hnion.ac

.tec

http://www.cs



http://www.cs.technion.ac.il/~gershon/EscherForReal/MoebiusAnt.gif

1 Face
3 Edges
2 Vertices

F-E+V=0




1 Face
3 Edges
2 Vertices

F-E4+V=0 ¥ =

Nasty manifolds can have same Euler characteristic as nice manifolds,
but topologically different




(vertices and edges are shared with adjacent modules):

V=2/2=1;E=2/2+1=2; F=1



Moebius band is topologically identical to cross-cap!

B

Xzcap — 0



another nasty manifold: Klein “bottle”




1 Face
2 Edges
1 Vertex

F-E+V=0

x =0




Non-oriented genus =1




A half-Klein bottle is a Mobius band

Zip two Mobius bands together along boundary:
form a Klein bottle!



Cannot be built from pants and caps,
instead,

use pants, caps and cross-caps



A simpler decomposition of orientable (nice)
manifolds:

use handles and caps

ANY nice manifold= sphere + handles (+ boundary)

sphere + 3 handles (genus 3)




replace pants by “handle”: -

handle = 1 pant + 1 cap




To build any nice manifold:

1. Start with a sphere (2 caps)




To build any nice manifold:

1. Start with a sphere (2 caps)

2. Add handles
(2 punctures,
1 pant + 1 cap)

Xhandle = 2Xpuncture + Xpant T Xcap = 2 Lok =i




To build any nice manifold:

1. Start with a sphere (2 caps) Xsphere = 2

2. Add handles

1 pant + 1 cap)

(2 punctures
Xhandle = 2Xpuncture + Xpant T Xcap = 2 Lok =i

3. Add boundary punctures

Xboundary = —1




ANY nasty manifold= sphere + handles +xcaps (+ boundary)

e.g. Boys surface
= sphere + xcap

Paul Nylander




T ld any manifold:

1. Start with a sphere (2 caps) Xsphere = 2

2. Add handles

1 pant + 1 cap)

(2 punctures
Xhandle = 2Xpuncture + Xpant T Xcap = 2 Lok =i

4. Add boundary punctures

Xboundary = —1




ANY manifold= sphere + handles + xcaps + boundary!

X = 2 — 2(#handles) — (#xcaps) — (#boundaries)



Conway symbols

modules symbol
handle O
cross-cap X

boundary * remove a .




X = 2 — 2(#handles) — (#zxcaps) — (#boundaries)

Notice that manifold features (handles, boundaries, xcaps) induce negative X

Conway symbol describes the manifold

0 = handle

* = boundary loop

OF**

|
x(ox %% xx)=2-[2(1) +1(3) + 1(2)] = -5

1 ?

better ***XXXX



Summarising:

< Manifold topology is independent of shape details
< Quantify topology by
* nice: pants, caps and holes only

% 2-sided, orientable

enasty: pants, caps, holes & crosscaps
% | -sided, non-orientable

< Characterise topology by value of X

& Characterise geometry by sign of X




Topology (X)
s related to
Gaussian curvature (K)



Gauss-Bonnet Theorem:
valid for any compact manifold

/ KdA—I—/ k, ds = 2mx(M)
M oM

P

Surface integral of Gaussian curvature

|
Line integral of geodesic curve around boundary

Euler characteristic



::Gauss-Bonnet Theorem for a boundary-free manifold::
“average” geometry from topology

[ | Kda =27y

Euler characteristic

Surface integral of Gaussian curvature



f f Kda = solid angle traced out by
normals to surface

R WY,

Figure 1.18. Planar vs. solid angle construction. A planar angle @ 1s egual
o the perimeter of a corcwlar arc of radiss one swept out by o rodial edge.
The solsd angle 1s the area of the region on the unaf sphere truced out by
a radial edge that sweeps through the entire solid angle. The verfer angles
of the resulting spherical polyggon (in this case, a triangle) are egual to the

dihedral angles betueen adjoining faces, 3.
(include sign of solid angle:“Gauss map”)



Area of pole region = integral (Gauss) curvature

Figure 1.22. The pole region on the sphere due to a {n. 2} polyhedral vertex.

The reqion s a face of a spherical polyhedron (cf. Figure 1.20, whose
vertices are the pole figures of all the (z) faces that contain that vertex.

Area of pole region of complete polyhedron = 4Tt




27X
— K —

Assume intrinsic homogeneity: Constant K
(i.e. no curvature variations)

//Kda = K.Area



sign of solid angle:

Positive Gaussian curvature
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<K>>( <K>=( <K><(

elliptic euclidean hyperbolic



... a torus has = 0 e.itis-on average - flat!

Gauss curvature

exactly equal contributions of + and - - -
Gaussian curvature

positive <€—— O —> negative



... a torus has one handle

X = 2 — 2(#handles) — (#zxcaps) — (#boundaries)

X:

Conway symbol:
0



a tritorus has three handles.....

X = 2 — 2(#handles) — (#xcaps) — (#boundaries)

... SO a tritorus is hyperbolic, with negative <K>



.. a genus-3 tritorus is -- on average -- HYPERBOLIC

0]0]0



... an infinite genus 3-periodic surface is -- on average --
HYPERBOLIC

Conway symbol:

Gauss curvature

0 > negative



local homogeneous 2D flat geometry can be globally
extended in 3D space:

euclidean plane = normal plane



local homogeneous 2D elliptic geometry can be globally
extended in 3D space:

c.edu/zoo/toptype/sphere/stills.html

Wwww.geom.uiu

elliptic plane = sphere


http://www.geom.uiuc.edu/zoo/toptype/sphere/stills.html

2D hyperbolic space is much “bigger” than 2D flat space

€.8. hyperbolic: area of a disc ~ exponential(radius)

flat: area of a disc ~(radius) 2



We represent the hyperbolic plane by the Poincaré model







(Hyper)Parallel lines Intersecting lines



what are these manifolds?

Klein bottle



which ones are nice (oriented), nasty!?




how many caps? xcaps? handles? boundaries!?

TWO boundaries ONE boundary

ONE crosscap

ONE handle

TWO crosscaps

Klein bottle



what are their Conway symbols?

TWO boundaries

ONE boundary

ONE crosscap

o

TWO crosscaps

ONE handle

Klein bottle



what is their geometry!?

Cylinder Maehiiic cfrip

euclidean, K=0

Klein bottle



what is their geometry!?

Klein bottle



Let’s build the universal cover of these manifolds...

The universal covers tile

the euclidean plane, E*2

Klein bottle



covers and universal cover of manifolds
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“Classical Topology and Combinatorial Group Theory”
John Stillwell



build the “universal cover’ of o:

R

cover

universal cover - E2 tiled by (4,4)



build the “universal cover” of oo:

universal cover - H2 tiled by (8,8)!






O = p1 wallpaper!




Klein bottle



-
i




Klein bottle



" mirror
line

** = pm wallpaper!



Conway symbols describe “orbifolds”

Orbifolds describe symmetric patterns



