New Zealand INSTITUTE for Advanced Study

Lecture 3: Quantum solitons and beyond

Solitons: Lecture 3

- Plan for today:
- solitary waves in elongated, 3 D geometry
 - Recap of last lecture
 - Chladni solitons
 - Solitonic vortex in image vortex model
- Physics of 1D Bose gas
 - Quantum effects in bright solitons
 - Lieb Liniger model
 - Type II excitations and *quantum* dark solitons

Solitons as stationary solutions of the nonlinear Schrödinger equation

Solitary waves in 3D waveguides

planar soliton vortex ring double ring more ...

solitonic vortex

Decay of planar dark soliton

Snaking instability of dark soliton in cylindrical trap?

Hydrodynamic picture of the snaking instability: Dark soliton is a membrane that "vibrates" under the influence of *surface tension* (and negative mass density).

Thus, we should expect the vibration modes of a circular membrane ...

Unstable modes of the dark soliton (numerics)

Chladni Solitons: Numerics (GPE)

Decay of planar dark solitons observed in the unitary Fermi gas

PRL 116, 045304 (2016)

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2016

Cascade of Solitonic Excitations in a Superfluid Fermi gas: From Planar Solitons to Vortex Rings and Lines

Mark J. H. Ku, Biswaroop Mukherjee, Tarik Yefsah, and Martin W. Zwierlein

Why is the solitonic vortex stable? Think ring BEC!

Why would a solitonic vortex oscillate more slowly?

It has a large ratio of effective to physical mass.

Solitonic vortex in a slab geometry

Method of images

X

Velocity potential

Energy-momentum dispersion relation

• Effective mass (v=0) • $m^* = -m\frac{4}{\pi}D^2n_2$

All particles in volume D^2 contribute to the effective/inertial mass

Solitonic vortex in a slab geometry

An experiment measuring the oscillation frequency of a solitonic vortex could measure precisely the filling factor of the vortex core. Lauri Toikka, JB, NJP (2017)

Quantum effects in solitons?

Let's go to one dimension.

Ground state for *N* attractive bosons in 1D box (Lai, Haus 1989)

Quantum mechanics (Mc Guire 1964)

- Bound state (cluster) of *N* particles
- Non-degenerate
- CoM delocalised quantum particle

GP mean field theory

- $\phi(x) = \operatorname{sech}(x)$ or $\operatorname{cn}(x|m)$
- Highly degenerate (position of soliton)
- CoM localised classical particle

$$g^{2}(x - x') = \langle \psi^{\dagger}(x)\psi^{\dagger}(x')\psi(x')\psi(x)\rangle \approx \operatorname{sech}^{4}(x - x')$$

Reality is actually a bit more complicated but in essence the g2 function is bell-shaped in both theories. For a detailed comparison see Kärtner and Haus PRA 48, 2361 (1993).

Quantum description of attractive bosons in 1D

- Exact solutions by J. B. McGuire (1964) for 1D bosons with attractive delta interaction
 - There is exactly one bound state for N particles. This is the ground state
 - All other solutions of N particles are scattering states. The scattering phase shifts can be determined.
- Quantum solitons as superpositions of McGuire bound states (Lai, Haus 1989)
 - Density profile and energies of GPE solitons compares very well with exact solutions
 - Centre of mass motion is that of a free quantum particle with mass Nm. Centre of mass should spread ballistically.
- Phase space/field theory treatment of quantum solitons by Drummond/Carter (1987)
 - Predicts squeezing in the number/phase uncertainty
 - Observed in 1991 (Rosenbluh, Shelby), also Leuchs (2001)

Predicted quantum effects

- Cat states
 - Scattering on a sharp barrier at very low kinetic energy should create superposition of soliton going left and soliton going right (Schrödinger cat state). Weiss and Castin (2009)
 - Quantum motion of the centre of mass (hard)
- Dissociation
 - Upon a sudden increase of interaction strength a splitting-up of the soliton into multiple fragments could be observed.
 Yurovsky, Malomed, Hulet, Olshanii (2017)

Quantum effects in dark solitons?

1D physics is described by the Lieb Liniger model.

1D Bose Gas – Lieb-Liniger model

$$H = \sum_{i} \frac{p_{i}^{2}}{2m} + 2g_{1D} \sum_{i < j} \delta(x_{i} - x_{j})$$

- 1D Bosons with repulsive δ interactions
- Ground- and excited-state wavefunctions exactly known from Bethe ansatz [Lieb, Liniger (1963)]
- Interaction parameter $\gamma = \frac{m}{\hbar^2} \frac{g_{1\mathrm{D}}}{n}$
- For $\gamma \to \infty$, problem is mapped exactly to free Fermi gas (Tonks-Girardeau gas) [Girardeau (1960)]
- Ring geometry provides periodic boundary conditions

Tonks-gas – Experiments

letters to nature

Tonks–Girardeau gas of ultracold atoms in an optical lattice

Belén Paredes¹, Artur Widera^{1,2,3}, Valentin Murg¹, Olaf Mandel^{1,2,3}, Simon Fölling^{1,2,3}, Ignacio Cirac¹, Gora V. Shlyapnikov⁴, Theodor W. Hänsch^{1,2} & Immanuel Bloch^{1,2,3}

MPQ Garching (2004)

other experiments:

T. Esslinger (Zürich)

W. Phillips (NIST)

D. Weiss (PSU), γ~5.5

R. Grimm (Innsbruck): confinement induced resonance!

 $\gamma \approx \frac{\text{interaction energy}}{\text{kinetic energy}}$

up to $\gamma_{eff} \sim 200$

Lieb-Liniger model: wave function

Consider
$$0 \le x_1 \le x_2 \dots \le x_N \le L$$

- Inside: $-\frac{\hbar^2}{2m}\sum_i \frac{\partial^2}{\partial x_i^2}\psi = E\psi$
- Boundary conditions are provided by
 - Interactions
 - Periodicity in the box
- Bethe ansatz:

$$\psi(x_1,\ldots,x_N) = \sum_P a(P)P\exp(i\sum_{j=1}^N k_j x_j)$$

P is a permutation of the set $\{k\} = k_1, k_2, \ldots, k_N$

- Just one quasimomentum per particle (!)
- Model is integrable, check Yang-Baxter equation

Bethe ansatz equations

$$k_j + \frac{1}{L} \sum_{l=1}^{N} 2 \arctan \frac{k_j - k_l}{c} = \frac{2\pi}{L} I_j$$

- k_j charge rapidities
- I_j integer (half-integer) valued quantum numbers
- $N\,$ $\,$ number of bosons
- L length of periodic box

$$P_{\text{tot}} = \hbar \sum_{j=1}^{N} k_j,$$
$$E_{\text{tot}} = \frac{\hbar^2}{2m} \sum_{j=1}^{N} k_j^2.$$

The nature of Bethe-ansatz solutions: Quasi-momenta and Fermi sphere

Excitation spectrum for the Lieb-Liniger model

Type II excitations can be identified with dark solitons!

Low-lying excitation spectrum (yrast states)

Soliton dispersion

- Soliton energy: $E_s(\mu, v_s, g) = \langle \hat{H} \mu \hat{N}
 angle E_h$
- Canonical momentum: $v_s = \frac{dE_s}{dp_c}$ Effective (inertial) mass: $m^* = 2\frac{\partial E_s}{\partial (v_s)^2}$ Physical (heavy) mass: $m_{ph} = mN_s$ $N_s = \int (n_s n_0)d^3r = -\frac{\partial E_s}{\partial \mu}$ (for v = 0)

The dark soliton dispersion (in the right units) asymptotically matches the Lieb type II dispersion relation for large densities. Ishikawa, Takayama JPSJ (1980)

So: We can use the dispersion relation to calculate properties of the "quantum dark soliton" in the Lieb-Liniger model.

Dark soliton particle number (missing particles) in Lieb-Liniger gas

Astrakharchik, Pitaevskii (2012)

But how to obtain a solitary wave?

- Construct a quantum dark soliton as a superposition of yrast states
- Density profile can be obtained with formulas from the algebraic Bethe ansatz
- Localised density depression propagates at constant velcocity and spreads over time
- Strongly analogous to quantum bright soliton

