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Solitons:	Lecture	3	

•  Plan	for	today:	
•  solitary	waves	in	elongated,	3	D	geometry	

–  Recap	of	last	lecture	
–  Chladni	solitons	
–  Solitonic	vortex	in	image	vortex	model	

•  Physics	of	1D	Bose	gas	
–  Quantum	effects	in	bright	solitons	
–  Lieb	Liniger	model	
–  Type	II	excitaGons	and	quantum	dark	solitons	
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Solitons	as	staGonary	soluGons	of	the	
nonlinear	Schrödinger	equaGon	

For	a	tutorial-style	introducGon	see	Reinhardt	1988	



Solitary waves in 3D waveguides 

axially symmetric 

planar soliton  
vortex ring 

not axially symmetric 

solitonic vortex  

double ring 
more ...  



Decay of planar dark soliton 



Snaking instability of dark soliton in 
cylindrical trap? 

Hydrodynamic picture of the snaking instability: 
Dark soliton is a membrane that “vibrates” under 
the influence of surface tension (and negative 
mass density). Kamchatnov, Pitaevskii PRL 

(2008) 

Thus, we should expect the 
vibration modes of a circular 
membrane … 



“Discoveries about the Theory of 
Chimes” 



Unstable modes of the dark soliton 
(numerics) 

A. Mateo Munoz, JB, PRL (Dec 2014) 



Chladni Solitons: Numerics (GPE) 
Dark soliton (DS) 

A. Mateo Munoz, JB, PRL (Dec 2014) 



Cascade of Solitonic Excitations in a Superfluid Fermi gas:
From Planar Solitons to Vortex Rings and Lines

Mark J. H. Ku, Biswaroop Mukherjee, Tarik Yefsah, and Martin W. Zwierlein
MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 5 July 2015; published 27 January 2016)

We follow the time evolution of a superfluid Fermi gas of resonantly interacting 6Li atoms after a phase
imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent
snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic
vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a
combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation
dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal
surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of
unitary fermionic superfluids out of equilibrium.

DOI: 10.1103/PhysRevLett.116.045304

Solitonic excitations such as solitons, vortices, and
vortex rings are found in a large variety of nonlinear
media, from classical fluids and plasmas to polyacetylene
chains and superconductors. While ubiquitous, their
intrinsic properties are tailored by the host medium. In
superfluids, which are characterized by a complex order
parameter with a well-defined phase and a nonviscous flow,
such excitations correspond to phase defects and exhibit
properties nonexistent in their classical counterparts. In
particular, a vortex is topologically protected owing to the
quantized circulation of the velocity field, and a traveling
soliton experiences superfluid back flow determined by the
phase difference across it [1,2]. The quantum statistics of
the particles forming the superfluid is yet another ingre-
dient which dramatically affects the properties of these
defects. In Fermi superfluids, as opposed to the bosonic
case, dark solitons and vortices are known to host in-gap
fermionic excitations in their cores, from the Andreev
bound states in the generic case [3,4], to the more exotic
Majorana fermions in the presence of spin-orbit cou-
pling [5,6].
Importantly, in a quantum fluid with short-ranged

interactions, these phase defects are localized within the
microscopic length scale of the system: the healing length
ξ. The healing length sets the length scale above which the
superfluid dynamics is well captured by the hydrodynamic
formalism. At length scales on the order of ξ or smaller, a
microscopic description is required, and this is where the
dichotomy between Bose superfluids and Fermi superfluids
becomes stringent. While weakly interacting Bose-Einstein
condensates (BECs) are well understood in terms of the
Gross-Pitaevskii (GP) theory, a complete microscopic
wave equation for strongly interacting Fermi superfluids
remains to be established. At the mean-field level, a unified
description can be formulated within the Bogoliubov–de

Gennes (BDG) formalism, which connects to the GP
equation in the limit of weakly interacting BECs, and
contains the necessary fermionic degrees of freedom
in the Bardeen-Cooper-Schrieffer (BCS) limit [1,2,4,7].
However, while the BDG framework provides a good
description of these two limiting cases, it is unclear whether
it contains the right ingredients to quantitatively handle the
short-range behavior of solitonic excitations in the strongly
correlated regime [8]. The unitary Fermi gas realized in
ultracold atom experiments offers a unique opportunity to
clarify this issue, as it resides at the point of the BEC-BCS
crossover where beyond mean-field correlations are
expected to be the strongest [9]. It is also the regime
where the healing length ξ is the smallest—on the order
of the interparticle spacing—such that phase defects are
as localized as possible in a quantum fluid.
A natural approach to experimentally revealing the core

dynamics of such defects is to trigger their decay. Solitonic
excitations, indeed, follow a well-defined hierarchy in
terms of stability and energy cost in three dimensions,
the planar soliton being the most energetic and unstable
towards the formation of other solitary waves [10–15]. In
weakly interacting BECs, dark solitons have been observed
decaying into vortex rings and vortices [16–20] as a
consequence of the snake instability, the undulation of
the soliton plane [10]. In the case of strongly interacting
Fermi superfluids, similar scenarios have been predicted
numerically within a mean-field approximation [21–23],
but an experimental support of such microscopic dynamics
is still lacking.
In this Letter, we create a cascade of solitonic excitations

in a unitary Fermi gas of 6Li atoms. Starting from a planar
dark soliton created via phase imprinting, we observe the
formation of ring defects which eventually decay into a
single solitonic vortex. By means of a tomographic imaging
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Decay of planar dark solitons observed 
in the unitary Fermi gas 

Phi soliton 
observed 



Why is the solitonic vortex stable?  
Think ring BEC! 
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Angular momentum 

Solitonic vortices are �
yrast states, the lowest 
energy state for given angular 
momentum.

JB, WP Reinhardt, J. Phys. B 37, L113 (2001)
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momentum / impulse 
S. Komineas, N. Papanicolao PRA 68, 043617 (2003)

Infinite cylinder/ ring

L

N~

See also vortex in small anulus: �
P. Mason and N. Berloff, PRA 79, 043620 (2009)



Why would a solitonic vortex 
oscillate more slowly?

It has a large ratio of effective 
to physical mass.



Solitonic vortex in a slab geometry 
Quantum gas in trap with hard walls, 
slab geometry

Weak harmonic potential in long direction

Thomas Fermi limit, i.e.
Healing length << box width << box length



All particles in volume D2 contribute to the effective/inertial mass

D2

Method of images 
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Solitonic vortex in a slab geometry 

Exactly known in Thomas 
Fermi limit

Depends on mesoscopic 
physics of quantum gas

m⇤ = �m
4

⇡
D2n2

Effective mass (v=0) Physical mass:

“Hard wall traps” can be made,
e.g. Gaunt et al. PRL 110, 200406 (2014)

An experiment measuring the oscillation frequency of a solitonic 
vortex could measure precisely the filling factor of the vortex core.

Lauri Toikka, JB, NJP (2017)
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Large mass ratio:

mph = �m⇠2n2 ln(D/⇠)



Quantum	effects	in	solitons?	

Let’s	go	to	one	dimension.		



Ground	state	for	N	aSracGve	bosons	in	1D	box	
(Lai,	Haus	1989)	

Quantum	mechanics	
(Mc	Guire	1964)	
•  Bound	state	(cluster)	
of	N	parGcles	

•  Non-degenerate	
	

•  CoM	delocalised		
quantum	parGcle	

GP	mean	field	theory	
	
•  		
or	

•  Highly	degenerate	
(posiGon	of	soliton)	

•  CoM	localised		
classical	parGcle	

�(x) = sech(x)

cn(x|m)

g

2(x� x

0) = h †(x) †(x0) (x0) (x)i ⇡ sech4(x� x

0)
Reality	is	actually	a	bit	more	complicated	but	in	essence	the	g2	funcGon	is	bell-shaped	in	
both	theories.	For	a	detailed	comparison	see	Kärtner	and	Haus	PRA	48,	2361	(1993).	



Quantum	descripGon	of	aSracGve	bosons	in	1D	
•  Exact	soluGons	by	J.	B.	McGuire	(1964)	for	1D	bosons	

with	aSracGve	delta	interacGon	
–  There	is	exactly	one	bound	state	for	N	parGcles.	This	is	the	

ground	state	
–  All	other	soluGons	of	N	parGcles	are	scaSering	states.	The	

scaSering	phase	shibs	can	be	determined.	
•  Quantum	solitons	as	superposiGons	of	McGuire	bound	

states	(Lai,	Haus	1989)	
–  Density	profile	and	energies	of	GPE	solitons	compares	very	well	

with	exact	soluGons	
–  Centre	of	mass	moGon	is	that	of	a	free	quantum	parGcle	with	

mass	Nm.	Centre	of	mass	should	spread	ballisGcally.	
•  Phase	space/field	theory	treatment	of	quantum	solitons	

by	Drummond/Carter	(1987)	
–  Predicts	squeezing	in	the	number/phase	uncertainty	
–  Observed	in	1991	(Rosenbluh,	Shelby),	also	Leuchs	(2001)	



Predicted quantum effects 

•  Cat states 
•  Scattering on a sharp barrier at very low kinetic 

energy should create superposition of soliton going 
left and soliton going right (Schrödinger cat state). 
Weiss and Castin (2009) 

•  Quantum motion of the centre of mass (hard) 
•  Dissociation 

•  Upon a sudden increase of interaction strength a 
splitting-up of the soliton into multiple fragments could 
be observed. 
Yurovsky, Malomed, Hulet, Olshanii (2017) 



Quantum	effects	in	dark	solitons?	

1D	physics	is	described	by	the	Lieb	Liniger	
model.		



•  1D	Bosons	with	repulsive	δ	interacGons	
•  Ground-	and	excited-state	wavefuncGons	exactly	known	

from	Bethe	ansatz	[Lieb,	Liniger	(1963)]	
•  InteracGon	parameter		

•  For																		,	problem	is	mapped	exactly	to	free	Fermi	
gas	(Tonks-Girardeau	gas)	[Girardeau	(1960)]	

•  Ring	geometry	provides	periodic	boundary	condiGons	

1D	Bose	Gas	–	Lieb-Liniger	model	



Tonks-gas	–	Experiments	

MPQ	Garching	(2004)	

other	experiments:	

T.	Esslinger	(Zürich)	

W.	Phillips	(NIST)	

D.	Weiss	(PSU),	γ~5.5	

R.	Grimm	(Innsbruck):	confinement	
	 	 	 		induced	resonance!	

up	to	γeff~	200	



Consider		
•  Inside:		

•  Boundary	condiGons	are	provided	by	
–  InteracGons	
–  Periodicity	in	the	box	

•  Bethe	ansatz:	

	 					is	a	permutaGon	of	the	set	
•  Just	one		quasimomentum	per	parGcle	(!)	
•  Model	is	integrable,	check	Yang-Baxter	equaGon	

Lieb-Liniger	model:	wave	funcGon	
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Bethe	ansatz	equaGons	

Dark-soliton-like excitations in the Yang-Gaudin gas of attractively interacting fermions6

the interaction constant as g = ~2
m c where c = 2

a1D
and a

1D is the 1D scattering length

[59]. Let us also introduce the 1D density, n
0

= N/L, and � = c/n
0

which is a useful

dimensionless parameter both in the finite system and in the thermodynamic limit.

2.1. Bethe ansatz equations in exponential form

The Bethe-ansatz solution of the Yang-Gaudin model (2) consists of superpositions of

plane waves for the many-body wave function [60]. These are subject to boundary

conditions where particles interact and at the box boundaries, as well as fermionic

symmetry constraints. The solutions are uniquely determined by a set of quantum

numbers with the dimension of wave numbers known as rapidities. They have to satisfy

the Bethe ansatz equations in exponential form [40, 41]:

exp(ikjL) =
MY

n=1

kj � ↵n + ic/2

kj � ↵n � ic/2
, (3)

NY

j=1

↵m � kj + ic/2

↵m � kj � ic/2
= �

MY

n=1

↵m � ↵n + ic

↵m � ↵n � ic
. (4)

The charge rapidities kj can be thought of as the quasi-momenta of the fermions. They

completely determine the total momentum and energy of the system

P
tot

= ~
NX

j=1

kj, (5)

E
tot

=
~2
2m

NX

j=1

k2

j . (6)

The spin rapidities ↵m are auxiliary variables and are present due to the spin degree of

freedom. The ↵m’s do not contribute to the energy or momentum but must be solved

for as they are coupled to the kj’s. There are infinitely many di↵erent sets of rapidities

that solve (3) and (4) and each one corresponds to an eigenstate of the Hamiltonian (2).

In this work we are interested in the yrast states, i.e. the states with the lowest energy

E
tot

at given momentum P
tot

. We also restrict ourselves to balanced populations of

spin-up and -down particles, i.e. N = 2M . The rapidities for yrast states can be easily

identified in the weak and strong interaction limits, where simple analytic solutions to

(3) and (4) are known. The yrast solutions for finite interaction strength can then be

found by continuity. Examples of rapidities for yrast states are shown in figure 2.

A particular feature due to the periodic boundary conditions is that a new set of

rapidities solving (3) and (4) can be generated from an existing one by adding 2⇡/L

(or an integer mutiple) to every kj and ↵m, as is easily seen from the equations. This

changes the momentum to P 0
tot

= P
tot

+ 2⇡~n
0

, where n
0

= N/L and the energy to

E 0
tot

= E
tot

+ (2⇡~n
0

)2/2mN . Physically this corresponds to a Galilean boost of the

whole system by the umklapp momentum 2⇡~n
0

⌘ 4pF , while the internal structure of

the many-body state is unchanged [47]. Here, pF = ⇡~n
0

/2 is the Fermi momentum of

kj -  charge	rapidiGes	
-  integer	(half-integer)	valued	quantum	numbers	
-  number	of	bosons	
-  length	of	periodic	box	

N

kj +
1

L

NX

l=1

2 arctan
kj � kl

c
=

2⇡

L
Ij

Ij

L



The	nature	of	Bethe-ansatz	soluGons:	
Quasi-momenta	and	Fermi	sphere	

	

Total	energy:	
	
Total	momentum:	
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ExcitaGon	spectrum	for	the	Lieb-Liniger	model	

γ=1	

momentum	qπ/kF	 momentum	qπ/kF	

~ωπ2/εF	~ωπ2/εF	

kF=πn1D	;		 εF=~2	kF2/(2m)	
umklapp	excitaGon	

� = 1

Lieb’s	type	II	branch	

Type	II	excitaGons	can	be	idenGfied	with	dark	solitons!	



Low-lying	excitaGon	spectrum	
(yrast	states)	

Momentum 

En
er

gy
 N=15 

Looks like the 
dark soliton  
dispersion 

P /(2π ħ N /L) 



Soliton dispersion 
•  Soliton energy: 

•  Canonical momentum: 

•  Effective (inertial) mass: 

•  Physical (heavy) mass: 

Es(µ, vs, g) = hĤ � µN̂i � Eh

vs =
dEs

dpc
m⇤ = 2

@Es

@(vs)2

mph = mNs

The	dark	soliton	dispersion	(in	the	right	units)	asympto8cally	matches	the	Lieb	type	
II	dispersion	rela8on	for	large	densi8es.	Ishikawa,	Takayama	JPSJ	(1980)	

Ns =

Z
(ns � n0)d

3r = ��Es

�µ
(for v = 0)

So:	We	can	use	the	dispersion	relaGon	to	calculate	properGes	of	the	“quantum	
dark	soliton”	in	the	Lieb-Liniger	model.	



Dark	soliton	parGcle	number	(missing	parGcles)	
in	Lieb-Liniger	gas	Lieb’s soliton-like excitations in harmonic trap

.

Fig. 1: (Color online) Solid line, frequency of oscillations Ω
in units of the frequency ωh of the harmonic oscillator as a
function of the interaction parameter γ; dashed line, asymp-
totic value in TG limit; dash-dotted linea, asymptotic value in
GP limit; short-dashed line, perturbative solution of integral
equations, Ω/ωh = 1− 1/γ + ....

imprinting method at small γ. Later the value of γ might
be increased by using CIR and soliton oscillations can be
excited by a parametric modulation of the trap frequency.
One expects to observe a resonance at the frequency of
modulation Ω/2. The resonance can be detected by heat-
ing of the gas.
The frequency of small oscillations is Ω/ωh =

√

Nsm/meff . It depends both on the number of particles
in the soliton Ns and on the effective mass meff . These
quantities must be taken in the limit of a small velocity
V → 0. The dependence of the number of particles in the
soliton at rest Ns(V = 0) on the interaction strength is
shown in Fig. 2. We find that for small γ (GP regime)
|Ns| ≫ 1 and the soliton is a macroscopic object, however
|Ns| becomes of the order of 1 at γ ∼ 1.
At small γ the number of atoms is well described by

the GP result, Eq. (4). However, the situation is different
for “fast” solitons with a vanishing momentum p → 0, i.e.
with the velocity approaching the speed of sound V → u.
According to Eq. (4) the number of atoms in a soliton
tends to zero, |Ns| ∝ (u − V )1/2. However, the calcula-
tions show that Ns tends to a finite value at V → u. It
is not difficult to prove, that this is only possible, if the
dispersion law of the soliton has the following expansion
at p → 0

ε(p) ≈ up+
p2

2m∗
, (13)

with m∗ = |meff (p = 0)|. This relation is quite non-
trivial, because presence of the p2 contradicts the GPE.
Indeed, according to GPE ε − up ∝ p5/3. The existence
of the p2 term was established by Periera et al. [17] and
Imambekov, Schmidt, and Glazman (see Eqs. (50)-(51)
in [18]). Such a term exists both for upper and lower

.

Fig. 2: (Color online) Solid line, number of particles Ns in
a stationary soliton (V = 0) as a function of the interaction
parameter γ; dashed line TG limit, Eq. (6); dash-dotted line,
GP limit, Eq. (4).

branches of elementary excitations. The effective mass is
the same in the absolute value for two branches. Simple
calculation permits to present the result of [18] as

|meff (p = 0)|−1 =
3

4

√

u

π!mρ

(

1 +
ρ

3u2

d(u2/ρ)

dρ

)

.

(14)
In the GPE regime γ ≪ 1, velocity of sound u ∝ ρ1/2 and
the second term disappears. Taking to account that the
presence of the p2 term in dispersion does not violate the
relation Ns = meff/2, one finds for γ → 0 [18]

|NS(p = 0)| =
2
√
π

3
γ−1/4 = 1.18γ−1/4 . (15)

In Fig. 3 we test the obtained result by showing the de-
pendence of |NS(p = 0)|γ1/4 on γ. One can see a good
agreement for the coefficient in Eq. (15) in GP limit.
In Galilean-invariant systems with a non-diagonal long

range order, there exists an important relation between
the momentum of a solition, the number of atomsNs and a
topological characteristic of the soliton, namely the phase
jump ϕs. This relation must be valid both in a superfluid
Bose system [19] and in a superfluid Fermi gas [20]. For a
Bose gas the relation can be written as

!ρϕs = p−mNsV . (16)

The phase jump as a function of the momentum p for
different values of γ is presented in Fig. 4.
Notice that in the TG limit large γ the jump ϕs = π

and does not depend on V . We could not find a simple
interpretation of this result.
The derivation of Eq. (16) implies an existence of a

well-defined complex order parameter. The validity of the

p-3

Astrakharchik,	Pitaevskii	(2012)	

Weakly	interacGng	1D	Bose	gas,	
GP	descripGon	holds	

Tonks-Girardeau	gas	limit,	
A	quantum	dark	soliton	has	
one	missing	parGcle		



But	how	to	obtain	a	solitary	wave?	
•  Construct	a	quantum	dark	soliton	as	a	superposiGon	of	yrast	

states	
•  Density	profile	can	be	obtained	with	formulas	from	the	

algebraic	Bethe	ansatz	
	

•  Localised	density	
depression		
propagates	at		
constant	velcocity	
and	spreads	over	Gme	

•  Strongly	analogous	to	
quantum	bright		
soliton	 40 50 60 70 80 90 0
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Shamailov,	Brand,	unpublished		


