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To	be	covered:	Solitons	in	quantum	gases	
•  Lecture	1:	Solitons	and	topological	solitons	

–  solitons	in	water:	the	KdV	equa;on,	iintegrability	
–  solitons	of	the	nonlinear	Schrodinger	equa;on	
–  solitons	of	the	sine	Gordon	equa;on	-	topological	solitons	
–  Bose	Josephson	vor;ces	in	linearly	coupled	BECs	

•  Lecture	2:	Semitopological	solitons	in	mul;ple	dimension	
–  Solitons	as	quasipar;cles:	effec;ve	mass	
–  solitons	in	the	strongly-interac;ng	Fermi	gas	
–  snaking	instability	
–  vortex	rings	
–  solitonic	vor;ces	

•  Lecture	3:	Quantum	solitons	
–  solitons	in	strongly-correlated	1D	quantum	gas	



Terminology	
•  Solitary	wave:	localises	energy	density	with	constant	shape	

	
	

•  Lump:	localises	energy	(not	always	constant	shape),	e.g.	sine-
Gordon	breather	

•  Soliton,	narrow	meaning:	solitary	waves	that	survive	
collisions.	Wider	meaning:	any	lump	or	solitary	wave	

•  Topological	soliton:	field	solu;on	(mapping)	that	is	dis;nct	
from	vacuum	by	homotopy	class,	e.g.	skyrmion.	
Note:	No	reference	to	localised	character	

✏(r, t) = ✏(r� vt)



Skyrmion	

•  Originally	solu;on	of	nonlinear	σ-model,	topological	
soliton	in	the	pion	field	to	model	low-energy	
proper;es	of	nucleon	(explains,	e.g.	nucleon	radius,	
stability,	Tony	Skyrme	1961/62).	

•  Topology:	mapping	of	unit	sphere	
where	
	
Homotopy	classes:	integer	winding	numbers	

•  1D	example:	
sine-Gordon	equa;on			

S3 ! S3

R3
[

{1} ⇠= S3

R1
[

{1} ⇠= S1 ! S1



Skyrmions	in	Bose-Einstein	condensate	

•  BEC	with	vector	order	parameter:	
many	proposals	(Stoof,	BaYey,	etc.	
from	2001)	but	no	experimental		
evidence.	
Problem:	stability		
(order	parameter	may	vanish)	

•  Related	experiments	by	David	Hall	(Amherst):	
Dirac	monopoles	(2015),	quantum	knots	(2016)	

Energetically Stable Particlelike Skyrmions in a Trapped Bose-Einstein Condensate
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We numerically show that a topologically nontrivial 3D Skyrmion can be energetically stable in a
trapped two-component atomic Bose-Einstein condensate, for the parameters of 87Rb condensate
experiments. The separate conservation of the two atomic species can stabilize the Skyrmion against
shrinking to zero size, while drift of the Skyrmion due to the trap-induced density gradient can be
prevented by rotation or by a laser potential.

DOI: 10.1103/PhysRevLett.91.010403 PACS numbers: 03.75.Lm, 03.75.Mn, 12.39.Dc

Localized topological excitations that do not perturb
the order parameter field at large distances from the
particle, and which are characterized by a topologically
invariant winding number, are well known in nuclear and
elementary particle physics [1–4]. While their study in
nuclear physics remains an experimental challenge, the
recent experimental progress in atomic Bose-Einstein
condensates (BECs) with internal spin degrees of free-
dom [5,6] has raised the possibility of the existence
of well-localized topological Skyrmions in atomic
gases [7–9]. In this Letter we identify, and show how to
overcome, the specific instabilities of Skyrmions in
trapped two-species atomic BECs and hence demonstrate
their energetic stability under realistic experimental
conditions.

Battye et al. [9] recently considered an infinite homo-
geneous two-species BEC, with constant total atom den-
sity. They showed that an energetically stable Skyrmion
may exist as a result of phase separation of the two
species, which suppresses the decay. These calculations
were extended to nonconstant total atom density and to
the trapping of one component [10]. In this Letter we
show that in a harmonically trapped system there are
additional instabilities, not considered in Refs. [9,10],
which will play a crucial role in the experimental real-
ization of Skyrmions in atomic BECs. Additional physi-
cal mechanisms, such as rotation or optical potentials,
will be required for stability. We also show how density
fluctuations, associated, e.g., with phonon emission [11],
are important in the Skyrmion decay process.

There has been an explosion of interest in vortex and
soliton experiments in atomic BECs [12], and we antici-
pate similar developments for other topological objects.
Hence we identify the Skyrmion energetic stability cri-
teria for the parameters of the JILA two-species 87Rb
experiments [5]. We find a threshold frequency below
0:1!, when only one species is rotated, and a narrow
window of rotation frequencies for the entire system
around 0:085!. We numerically evaluate the stable con-
figurations (Fig. 1) by minimizing the energy of the full
3D mean-field theory of coupled Gross-Pitaevskii equa-

tions (GPEs) and calculate the associated topological
charges.

A Skyrmion is a topological particlelike soliton solu-
tion with a coreless 3D texture. Besides their intrinsic
fundamental interest, Skyrmions have important appli-
cations in nuclear physics [1–3], and analogous structures
are postulated for early Universe cosmology [13].
Skyrmions are localized objects such that the order

FIG. 1 (color online). Density and order parameter profiles
for energetically stable trapped Skyrmions (N! " N# " 4:5$
106). Top: 3D densities. The central (blue) tori are isosurfaces
of j #j2. Isosurfaces of j !j2 (red) are shown for x < 0: on the
y-z plane between the isosurface sections its density is indi-
cated by a color map from red (lowest) to purple (highest).
Left: Stabilized by rotating  # only, with angular velocity
0:1!. Right: stabilized by rotating the entire system with an-
gular velocity 0:085!. Bottom: 1D densities (left axis, units of
x#3
ho ) and the order parameter profile !%x; 0; 0& (right axis,

dotted line) for rotating  # only. Solid line: j !j2 ! j #j2.
Dashed line: j !j2. Dash-dotted line: j #j2. !%x; 0; 0& is ex-
tracted from the wave functions. The notch in ! is due to the
mean-field repulsion inflating the vortex ring core. !%r& is
highly anisotropic, with !%0; 0; z& qualitatively close to
2 arctan%jzj&.
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Figure 4 | Numerical simulation of the knot creation before expansion. Horizontally (a) and vertically (b) integrated particle densities of a condensate just
before the projection ramp after an evolution time of 558 µs, with parameters matching those in Fig. 3. The field of view is 13 µm ⇥ 13 µm in each frame, and
the maximum pixel intensity corresponds to ñp =3.8⇥ 1011 cm�2.
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Figure 5 | Linked preimages. Experimental (a) and simulated (b) top images of the m=0 spinor component for Tevolve =508 µs and projections along �x,
where the maximum pixel intensity corresponds to column densities in excess of ñp = 1.0⇥ 109 cm�2 and the field of view 219 µm ⇥ 219 µm. c, Simulated
top image of the condensate in b before expansion, with ñp =2.6⇥ 1011 cm�2. Projection along ↵2 {±x,±y} results in a column density with pronounced
intensity along the preimages of d↵ = 1 and d↵ =�1. d, Preimages of dx =±1 from the simulation of panel c, with colours corresponding to those of Fig. 1e.
The field of view in c,d is 13 µm ⇥ 13 µm. e–h, Same as a–d, but for images taken from the side. The field of view in e,f is 246 µm ⇥ 246 µm with
ñp =8.5⇥ 108 cm�2, and the field of view in g,h is the same as in c,d. i–l, Same as a–d, but for projection along y and preimages dy =±1. m–p, Same as e–h,
but for projection along y and preimages dy =±1.

Larmor precession. The core of a knot soliton is conventionally
identified with the preimage of the south pole of S2, that is,
d̂core =�d̂0, which lies in the x 0y 0-plane. Here, this ring is a circle
(Fig. 1c–e). The comparable preimage of the north pole of S2, d̂= d̂0,
includes the z 0-axis and the points on the boundary of V . The
preimages of the equatorial points on the two-sphere consist of

linked rings that, taken together, define a toroidal tube enclosing
the core, as shown in Fig. 1e. Elsewhere, d̂ varies smoothly between
these directions.

After an evolution time Tevolve we apply a projection ramp in
which the bias field Bz is rapidly changed to move the field zero
far from the centre of the condensate27,28. The condensate is then
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Superfluid	vortex	as	topological	soliton	
Vortex	in	scalar	superfluid	

Vortices are quantized in the  
nonlinear Schrödinger equation 

κ  = 0, 1, -1, 2, -2, … 

Velocity field 

Is	the	vortex	a	solitary	(localised)	wave?	
	
No,	it	is	an	extended	object.	
Even	in	2D	the	energy	diverges	
logarithmically	with	system	size.	

R2
[

{1} ⇠= S2 ! S1



Vortex	ring	(in	3D)	and	
Vortex	dipole	(in	2D):	
	
Are	localised	algebraically	

Solitary	waves	in	extended	superfluids?	

Motions in a Bose condensate 11335
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Figure 1. The JR dispersion curve for the family of the axisymmetric solitary wave solutions. The
part of the curve that corresponds to vortex rings is shown in grey (red). Three rarefaction waves
that are considered in the text are indicated by circles.
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Figure 2. Cross-sections of a rarefaction wave through the axis of symmetry Oz, which is from
left to right in the figure. This wave is the member of the upper branch that travels with velocity
U = 0.69 in the positive z-direction. The left-hand panel shows contours on which the density is
0.5, 0.7, 0.9, 1.03 and 1.06, the darker areas corresponding with smaller densities. The arrows on
the right-hand panel show the directions of the flow velocity and the solid lines give the indicated
velocity magnitudes.

the structure of such rarefaction waves, we show the density contour plots, the velocity fields
and velocity magnitudes of the rarefaction pulse with the velocity U = 0.69 in figure 2.

The JR sequence can be uniquely characterized in other ways, for example, by the velocity,
U, of the wave or by min(u), the minimum of the real part of ψ = u + iv. Figure 3 shows
min(u) as a function of U for the entire family of JR solutions. In the limit U → 0 of
large vortex rings, min(u) → −1; in the opposite limit, U → c, of large rarefaction waves,
min(u) → +1. Between these extremes, the case min(u) = 0 deserves special mention, as it
separates the rarefaction waves, which do not possess vorticity, from the vortex-type solutions
which do. In this case, ψ vanishes at a single point, so that this solution might appropriately be
termed a ‘point defect’; its velocity is approximately U ≈ 0.62. The cusp (U ≈ 0.65) in the
pE-plot arises because U = ∂E/∂p = E′(U)/p′(U), so that extrema of p are simultaneously
extrema of E.

It was suggested in [3] as well as in its more detailed sequel [4] that every solitary wave
on the upper branch is unstable, since it is energetically favourable for it to ‘collapse’ onto

Vortex	rings	and	rarefac>on	pulses		
	in	3D	Gross	Pitaevskii	equa;on	
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Figure 2. Cross-sections of a rarefaction wave through the axis of symmetry Oz, which is from
left to right in the figure. This wave is the member of the upper branch that travels with velocity
U = 0.69 in the positive z-direction. The left-hand panel shows contours on which the density is
0.5, 0.7, 0.9, 1.03 and 1.06, the darker areas corresponding with smaller densities. The arrows on
the right-hand panel show the directions of the flow velocity and the solid lines give the indicated
velocity magnitudes.

the structure of such rarefaction waves, we show the density contour plots, the velocity fields
and velocity magnitudes of the rarefaction pulse with the velocity U = 0.69 in figure 2.

The JR sequence can be uniquely characterized in other ways, for example, by the velocity,
U, of the wave or by min(u), the minimum of the real part of ψ = u + iv. Figure 3 shows
min(u) as a function of U for the entire family of JR solutions. In the limit U → 0 of
large vortex rings, min(u) → −1; in the opposite limit, U → c, of large rarefaction waves,
min(u) → +1. Between these extremes, the case min(u) = 0 deserves special mention, as it
separates the rarefaction waves, which do not possess vorticity, from the vortex-type solutions
which do. In this case, ψ vanishes at a single point, so that this solution might appropriately be
termed a ‘point defect’; its velocity is approximately U ≈ 0.62. The cusp (U ≈ 0.65) in the
pE-plot arises because U = ∂E/∂p = E′(U)/p′(U), so that extrema of p are simultaneously
extrema of E.

It was suggested in [3] as well as in its more detailed sequel [4] that every solitary wave
on the upper branch is unstable, since it is energetically favourable for it to ‘collapse’ onto

Jones	and	Roberts,	JPA	(1982),	Berloff	and	Robert	JPA	(2004)	



So,	solitons	are	like	par;cles.	
Then,	what	is	the	mass?	

If solitons are emergent particle-like excitations, their 
mass is an emergent classical property. 



Mass of a ping pong ball under water 

Movie credit:  Allan Adams (MIT) et al. Filmed at 1200fps

Buoyancy force:

Acceleration:

mẍ = FB

ẍ ⇡ �11g?

Physical mass:

Effective (inertial) mass:
Includes mass of water dragged along with the ball
Changes during motion

mph = m�mw

⇡ �11m

m

⇤
ẍ = FB

ẍ = g

mph

m

⇤

m⇤

FB = mg �mwg

⇡ �11mg



Dark solitons in a trapped BEC 

Solitons in trapped BEC 
oscillate more slowly than COM 

Hamburg Experiment: Becker et al. (2008) 

Theory: 
• Busch, Anglin PRL (2000) 
• Konotop, Pitaevskii, PRL (2004) 
 
Experiment: 
• Becker et al. Nat. Phys. (2008) 
• Weller et al. PRL (2008) 

Movie credits: Nick Parker, Univ. Leeds 
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Soliton dispersion 

Soliton energy: 
 
Canonical momentum: 
 
Effective (inertial) mass: 
 
Physical (heavy) mass: 

Es(µ, vs, g) = hĤ � µN̂i � Eh

vs =
dEs

dpc

Ns =

Z
(ns � n0)d

3r = ��Es

�µ

m⇤ = 2
@Es

@(vs)2

mph = mNs

(for v = 0)

Es ⇡ E0 +
p2c
2m⇤



1
3 

Landau quasiparticle dynamics 

•  soliton moves on a slowly varying background, 
locally conserving energy 
 

          equation of motion 
 

•  For harmonic trapping potential obtain small 
amplitude oscillations with 
 
 

–  BEC solitons: also locally conserve particle number 

Konotop, Pitaevskii, PRL (2004) 
Scott, Dalfovo, Pitaevskii, Stringari, PRL(2011) 

Ns = f(Es(vs, µ))

dEs(vs, µ(z))

dt
= 0

✓
Ts

Ttrap

◆2

=
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mph

m⇤

mph
= 2



What about dark solitons in a 
fermionic superfluid?

We only need to compute the dispersion relation  
to obtain the mass ratio and predict oscillation frequencies … 



1
5

Feshbach resonance for spin-1/2 
fermions 

credit: MIT group 
BEC of 

preformed pairs 

BCS superfluid 

unitarity 



BEC to BCS crossover Fermi gas 

From: Randeria, Nat. Phys. (2010)

Can solitons probe 
strongly-

interacting physics 
beyond 

hydrodynamics? 
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Dispersion relations: computed from 
Bogoliubov-de Gennes equation 

Scott, Dalfovo, Pitaevskii, Stringari, Fialko, Liao, Brand NJP 14, 023044 (2012) 

unitarity :

1/kFa = 0

BEC(dotted) :

1/kFa = 1

BCS(green) :

1/kFa = �0.2

BCS(blue) :

1/kFa = �0.5

lines: fit of (1� v2/c2)↵

Liao, Brand PRA 83, 041604(R) (2011) 

Termination points reveal fermionic physics. 



Experiment: Yefsah et al., Nature (2013) 
Theory: Liao, Brand, PRA (2011), 
Scott, Dalfovo, Pitaevskii, Stringari, PRL (2011)  

Dark soliton in superfluid Fermi gas 
experiment 

Theory 
prediction
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Heavy solitons in a fermionic superfluid
Tarik Yefsah1, Ariel T. Sommer1, Mark J. H. Ku1, Lawrence W. Cheuk1, Wenjie Ji1, Waseem S. Bakr1 & Martin W. Zwierlein1

Solitons—solitary waves that maintain their shape as they propagate—occur as water waves in narrow canals, as light
pulses in optical fibres and as quantum mechanical matter waves in superfluids and superconductors. Their highly
nonlinear and localized nature makes them very sensitive probes of the medium in which they propagate. Here we
create long-lived solitons in a strongly interacting superfluid of fermionic atoms and directly observe their motion. As
the interactions are tuned from the regime of Bose–Einstein condensation of tightly bound molecules towards the
Bardeen–Cooper–Schrieffer limit of long-range Cooper pairs, the solitons’ effective mass increases markedly, to more
than 200 times their bare mass, signalling strong quantum fluctuations. This mass enhancement is more than 50 times
larger than the theoretically predicted value. Our work provides a benchmark for theories of non-equilibrium dynamics
of strongly interacting fermions.

Solitonic excitations are found throughout nature, in proteins and DNA,
in crystals as dislocations, and generally in the wake of symmetry-
breaking phase transitions1. In fermionic systems, solitonic defects may
provide bound states for fermions that often play a crucial role in the
system’s transport properties. Famous examples are Andreev bound
states inside vortex cores2, fractionally charged solitons in relativistic
quantum field theory3,4, and the spinless charged solitons responsible
for the high conductivity of polymers5. However, the free motion of
such defects in electronic systems is hindered by pinning at impurities5,6.
Fermionic superfluids of ultracold atomic gases provide a paradig-
matic form of quantum matter7–9 that is free of impurities, where—
as we show here—real-time dynamics of solitonic excitations can be
directly observed.

Superfluids are described by a complex macroscopic wavefunction
that is rigid against twists of its phase. The ground state of the super-
fluid thus has uniform phase, and small perturbations propagate as
sound waves. A nonlinear excitation—the dark soliton—occurs when
the phase is twisted substantially over a short range. In the extreme
case of a phase jump by 180u, the wavefunction changes sign and cro-
sses zero at the location of the jump, creating a stationary black soliton.
In weakly interacting Bose–Einstein condensates (BECs) all bosons
reside in the condensate, so the particle density vanishes at a black
soliton, and is reduced for a moving dark soliton. Solitons in BECs
have been studied extensively both theoretically and experimentally10.
In a series of pioneering experiments, dark solitons have been created
via phase-imprinting11–14 or in the wake of shock waves15–17. Collisions
of two dark solitons17 and soliton oscillations14,17 were observed. Soli-
tons in weakly interacting BECs are well described as solutions to the
Gross–Pitaevskii equation, known in other contexts as the cubic non-
linear Schrödinger equation.

In fermionic superfluids7–9, solitons are phase twists in the wave-
function of fermion pairs18,19. For s-wave superfluids, the pair wave-
function is also known as the pairing gap D(r), which in general can
depend on the spatial location r. By tuning the interactions between
fermions, one can access the crossover from Bose–Einstein condensa-
tion of molecules to the Bardeen–Cooper–Schrieffer (BCS) state of
long-range Cooper pairs. In the limit of tight molecular pairing, inter-
actions between molecules are weak and the molecular condensate is
still described by the Gross–Pitaevskii equation. Stationary solitons
are thus again devoid of particles. In this limit, the wavefunction for a
stationary soliton, shown in Fig. 1a, depends on position along the z

axis as D(z) 5 D0tanh(z/j), where D0 is the magnitude of the wave-
function in the bulk, far away from the soliton, and the soliton width j
is equal to the healing length of the condensate20. The repulsive inter-
actions between the molecular bosons can be increased by means of a
Feshbach resonance, allowing the study of strongly interacting Bose
gases7. Strong interactions increase the importance of quantum fluc-
tuations that are present even at zero temperature, leading to a deple-
tion of the condensate. The uncondensed bosons are expected to fill in
the soliton notch, the void at the soliton’s position, in order to mini-
mize their repulsive interaction with the condensate10,21–24. Figure 1a
shows the density profile of the bosons localized at the soliton, the so-
called anomalous mode that is predicted to be the main contribution
to the density inside the soliton notch21–23. Similar soliton filling has
been predicted for BECs in optical lattices, where the effect of inter-
actions and thus the role of quantum fluctuations is enhanced by
reducing the particles’ kinetic energy25.

Description of solitons in the BEC–BCS crossover
When the interaction strength in the pair condensate becomes of the
order of the Fermi energy (EF), the composite nature of the molecules
is revealed. The fermion pair size is now of the order of the interpar-
ticle spacing, and the system is a crossover superfluid in between the
BEC and BCS limits of superfluidity7–9. A unified description for soli-
tons in fermionic superfluids throughout the BEC–BCS crossover has
been found within mean-field theory via the Bogoliubov-de Gennes
(BdG) equation for a spatially varying gap D(z) (refs 19, 26–28):

{
h!2+2

2m
{m

! "
szzD zð Þsx

# $
un

vn

! "
~En

un

vn

! "
ð1Þ

where h! is Planck’s constant h divided by 2p, m is the atomic mass, m is
the chemical potential, sx,y,z are Pauli matrices, and un(z) and vn(z) are
the amplitudes describing the particle and hole character of Bogo-
liubov quasi-particles of energy En (we omit spin indices). The order
parameter D(z) is related to the quasi-particle amplitudes by the self-
consistency relation D zð Þ~{g

P
nun zð Þv#n zð Þ, where g is the coup-

ling strength, tunable via the scattering length a between fermions,
and * denotes complex conjugation. The BdG equations have been
shown to reduce to the Gross–Pitaevskii equation for bosonic mole-
cules in the BEC limit29, where stationary solitons are devoid of part-
icles. As the interactions are tuned from the BEC to the BCS regime,
the BdG equations predict an increasing filling of the soliton19. At the

1MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
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provide bound states for fermions that often play a crucial role in the
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states inside vortex cores2, fractionally charged solitons in relativistic
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for the high conductivity of polymers5. However, the free motion of
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as we show here—real-time dynamics of solitonic excitations can be
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fluid thus has uniform phase, and small perturbations propagate as
sound waves. A nonlinear excitation—the dark soliton—occurs when
the phase is twisted substantially over a short range. In the extreme
case of a phase jump by 180u, the wavefunction changes sign and cro-
sses zero at the location of the jump, creating a stationary black soliton.
In weakly interacting Bose–Einstein condensates (BECs) all bosons
reside in the condensate, so the particle density vanishes at a black
soliton, and is reduced for a moving dark soliton. Solitons in BECs
have been studied extensively both theoretically and experimentally10.
In a series of pioneering experiments, dark solitons have been created
via phase-imprinting11–14 or in the wake of shock waves15–17. Collisions
of two dark solitons17 and soliton oscillations14,17 were observed. Soli-
tons in weakly interacting BECs are well described as solutions to the
Gross–Pitaevskii equation, known in other contexts as the cubic non-
linear Schrödinger equation.

In fermionic superfluids7–9, solitons are phase twists in the wave-
function of fermion pairs18,19. For s-wave superfluids, the pair wave-
function is also known as the pairing gap D(r), which in general can
depend on the spatial location r. By tuning the interactions between
fermions, one can access the crossover from Bose–Einstein condensa-
tion of molecules to the Bardeen–Cooper–Schrieffer (BCS) state of
long-range Cooper pairs. In the limit of tight molecular pairing, inter-
actions between molecules are weak and the molecular condensate is
still described by the Gross–Pitaevskii equation. Stationary solitons
are thus again devoid of particles. In this limit, the wavefunction for a
stationary soliton, shown in Fig. 1a, depends on position along the z

axis as D(z) 5 D0tanh(z/j), where D0 is the magnitude of the wave-
function in the bulk, far away from the soliton, and the soliton width j
is equal to the healing length of the condensate20. The repulsive inter-
actions between the molecular bosons can be increased by means of a
Feshbach resonance, allowing the study of strongly interacting Bose
gases7. Strong interactions increase the importance of quantum fluc-
tuations that are present even at zero temperature, leading to a deple-
tion of the condensate. The uncondensed bosons are expected to fill in
the soliton notch, the void at the soliton’s position, in order to mini-
mize their repulsive interaction with the condensate10,21–24. Figure 1a
shows the density profile of the bosons localized at the soliton, the so-
called anomalous mode that is predicted to be the main contribution
to the density inside the soliton notch21–23. Similar soliton filling has
been predicted for BECs in optical lattices, where the effect of inter-
actions and thus the role of quantum fluctuations is enhanced by
reducing the particles’ kinetic energy25.

Description of solitons in the BEC–BCS crossover
When the interaction strength in the pair condensate becomes of the
order of the Fermi energy (EF), the composite nature of the molecules
is revealed. The fermion pair size is now of the order of the interpar-
ticle spacing, and the system is a crossover superfluid in between the
BEC and BCS limits of superfluidity7–9. A unified description for soli-
tons in fermionic superfluids throughout the BEC–BCS crossover has
been found within mean-field theory via the Bogoliubov-de Gennes
(BdG) equation for a spatially varying gap D(z) (refs 19, 26–28):
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where h! is Planck’s constant h divided by 2p, m is the atomic mass, m is
the chemical potential, sx,y,z are Pauli matrices, and un(z) and vn(z) are
the amplitudes describing the particle and hole character of Bogo-
liubov quasi-particles of energy En (we omit spin indices). The order
parameter D(z) is related to the quasi-particle amplitudes by the self-
consistency relation D zð Þ~{g

P
nun zð Þv#n zð Þ, where g is the coup-

ling strength, tunable via the scattering length a between fermions,
and * denotes complex conjugation. The BdG equations have been
shown to reduce to the Gross–Pitaevskii equation for bosonic mole-
cules in the BEC limit29, where stationary solitons are devoid of part-
icles. As the interactions are tuned from the BEC to the BCS regime,
the BdG equations predict an increasing filling of the soliton19. At the
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We observe a long-lived solitary wave in a superfluid Fermi gas of 6Li atoms after phase imprinting.
Tomographic imaging reveals the excitation to be a solitonic vortex, oriented transverse to the long axis of
the cigar-shaped atom cloud. The precessional motion of the vortex is directly observed, and its period is
measured as a function of the chemical potential in the BEC-BCS crossover. The long period and the
correspondingly large ratio of the inertial to the bare mass of the vortex are in good agreement with
estimates based on superfluid hydrodynamics that we derive here using the known equation of state in the
BEC-BCS crossover.
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Solitary waves that do not spread as they propagate are
ubiquitous in nonlinear systems, from classical fluids and
fiber optics to superfluids and superconductors. These
waves are localized objects with defined energy and mass,
and as such they can be described as an effective single
particle emerging from a many-body environment. This
distinguishes them from larger-scale collective excitations
such as shape oscillations of a superfluid, or from pertur-
bative linear excitations such as phonons. Paradigmatic
examples of solitary waves in superfluids are planar
solitons that separate regions of differing phase, as well
as vortex rings or single vortex lines [see Fig. 1(a)]. The
direct creation of such localized and highly nonlinear
objects “on demand” in ultracold quantum gases allows
for an excellent dynamical probe of novel superfluids, such
as strongly interacting Fermi gases [1] or spin-orbit coupled
Bose-Einstein condensates [2,3].
In a recent experiment on fermionic superfluids at MIT

[1], long-lived solitary waves were produced that featured a
large ratio of inertial to bare (missing) mass of over 200,
evidenced by an oscillation period over 15 times longer
than the period for a single atom. The observed absorption
images suggested the interpretation of the waves as planar
solitons, but the longevity as well as the large effective
mass ratio were unexpected for this type of defect [4–7].
Indeed, the nodal plane of a soliton is energetically more
costly than the nodal line of a vortex, and planar solitons
can decay into lower energy excitations via the snake
instability, the undulation of the soliton plane [4]. Several
recent works therefore suggested that these solitary waves
are vortex rings [8–10]. For weakly interacting Bose-
Einstein condensates, solitons have been created [11,12]
and observed to decay into vortex rings [13,14]. The latter
further decay into a vortex-antivortex pair that eventually
breaks up, leaving behind a single remnant vortex [15–17].
The exact process was recently elucidated in a discussion of

apparent soliton oscillations observed in weakly interacting
BECs [18,19]. In the case of strongly interacting fermionic
superfluids, the understanding of such nontrivial dynamics
presents a challenging nonequilibrium many-body prob-
lem [8,20].
In this Letter, we investigate the nature of the long-lived

solitary wave observed in Ref. [1] via tomographic imaging
and identify the wave to be a solitonic vortex [15–17]. The
term describes a vortex placed in an elongated geometry,
such as the cigar-shaped superfluid of the present experi-
ment, where the transverse Thomas-Fermi cloud radius R⊥
is much smaller than the axial radius Rz. In this case, a
vortex deforms the superfluid phase only in a restricted
region of axial extent ∼R⊥. The vortex together with the
surrounding flow field thus constitutes an effective particle
localized to within R⊥ ≪ Rz. Its far-field phase profile
resembles that of a dark soliton. In particular, the phase
difference across a stationary solitonic vortex in the axial
direction is π, the same as for a stationary dark soliton.
A vortex moving in the axial direction at a critical speed
converts into a gray, moving soliton [17]. In the tightly
confining limit where R⊥ approaches ξ, the vortex core
size, a stationary solitonic vortex becomes energetically
degenerate with a dark soliton [16,17]. In the limit of an
isotropic system where R⊥ ∼ Rz, one recovers a conven-
tional vortex. A solitonic vortex thus represents the link
between the topologically protected excitations in one and
three dimensions. The precessional motion of the vortex,
projected onto the long axis of the cigar-shaped atom cloud,
appears as the oscillation of a particle of inertial mass M!

and bare mass M. As we show below, the bare mass scales
as the missing mass inside the vortex core,M ∝ mnξ2R⊥L,
while the inertial mass M! ∝ mnR3

⊥=L is proportional to
the volume R3

⊥ in which flow is perturbed by the vortex.
Here, n is the gas density and L ¼ lnðR⊥=ξÞ is a loga-
rithmic correction that is on the order of 3 to 5 in our
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experiment. Thus, M!=M ∝ R2
⊥=ξ

2=L2, which can easily
approach 200 for our experimental parameters, thus
explaining the experimental findings in Ref. [1].
We create fermionic superfluids using a balanced mix-

ture of the two lowest hyperfine states of 6Li, j1i and j2i.
A Feshbach resonance allows us to tune the interparticle
interactions from the limit of Bose-Einstein condensation
of tightly bound molecules towards the regime of BCS
superfluidity [1,21]. The atom cloud contains 1–10 × 105

atoms per spin state and is cigar shaped due to a tight radial
confinement from an optical dipole trapping beam propa-
gating along the (horizontal) z direction, in combination
with a weaker, harmonic confinement along z provided
by a magnetic field curvature. The radial and axial
trapping frequencies are varied in the range of ω⊥=2π ≈
55–75 Hz and ωz=2π ¼ 5–23 Hz. Gravity slightly weak-
ens the trapping potential along the vertical y direction,
causing a residual anharmonicity and an anisotropy
ωy=ωx − 1 ≈ −5%.
The solitary wave is created as in Refs. [1,11,12,18] via

phase imprinting, whereby one half of the superfluid is
exposed to a blue-detuned laser beam for a duration that

causes a phase shift of the order parameter close to π.
To observe the magnitude of the superfluid wave function,
we employ a rapid ramp to the BEC side of the Feshbach
resonance during time of flight [1,21,22]. In addition to
emptying out defects such as vortex cores [22], the ramp
effectively increases the healing length ξ of the superfluid
to observable values (typically ∼20 μm). The observed
width of the defect after the rapid ramp and time of flight
thus does not reflect the in-trap width, which is expected to
be on the order of one interparticle spacing ∼1 μm [23].
Absorption images are taken along the vertical direction
[see Fig. 1(b)].
In order to lift the ambiguity on the nature of the

observed excitation, we employ a tomographic technique
whereby only a chosen slice of the full atom cloud is
imaged after time of flight [see Fig. 1(b)]. This method
gives direct access to the local density of the 3D cloud.
Tomography is achieved by optically pumping within 10 μs
all atoms outside the desired slice into hyperfine states that
are off resonant with the imaging transition for state j1i,
predominantly state j6i. The slice is selected by masking
part of the optical pumping light with a thin wire, and
projecting the wire’s shadow onto the atom cloud. The slice
thickness is measured to be 23ð1Þ μm (¼ 2σ of a Gaussian
fit), comparable to the width of the observed solitary wave
after time of flight, and about one sixth of the transverse
cloud diameter after expansion. Since the imaging pro-
cedure is destructive, each run of the experiment provides a
single slice at a given time of the defect’s motion. Thanks
to the high degree of stability of our experiment, reliable
tomography can be built up from many repetitions of the
experiment.
Representative tomographic images for the unitary

fermionic superfluid are shown in Fig. 1(c), taken 1.6 s
after the phase imprint. A line of depletion with about 40%
contrast cuts across the entire cloud in one particular slice.
This immediately demonstrates that the solitary wave is not
a vortex ring. On average, only a specific one of the six
slices imaged features the depletion. The strong depletion is
thus not a planar soliton, as we interpreted in our previous
paper [1] . Instead, our observation is consistent with a
single, solitonic vortex. For the present experimental
conditions we observe the vortex to be horizontal in every
single repetition of the experiment. Due to the slight
anisotropy of the trap, the vortex can minimize its energy
by aligning along the short axis, while orientation along the
longer, intermediate axis is unstable [19,24,25]. Slight tilts
of the vortex into the vertical direction cause partial vortex
lines to be detected in a given slice, as seen for slice
position y ¼ −39 μm in Fig. 1(c).
In a fully 3D setting where the radial cloud size R⊥ is

much larger than the vortex core size ξ, an off-center
transverse vortex will undergo precessional motion along
equipotential lines [26,27]. Tomographic imaging enables a
measurement of the vortex position in the z-y plane [see
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FIG. 1 (color online). (a) Examples of solitary waves in 3D
Bose-Einstein condensates. Shown are simulated column density
profiles in the (z-x) plane (upper row), the local density of the
cloud in a central layer in the (z-y) plane (middle row), and
the phase (lower row) for a soliton (left), a solitonic vortex
(center), and a vortex ring (right). The images correspond to
μ=ℏω⊥ ¼ 7.31, 7.14, and 10.66. (b) Schematic of the exper-
imental tomographic imaging technique. A partially masked
optical pumping beam propagating along z (not shown) selects
a 23 μm thick slice within the expanded atom cloud for
absorption imaging along the vertical y direction. (c) Tomography
of a unitary fermionic superfluid of 6Li atoms containing a
solitary wave. Shown are density distributions of horizontal slices
selected at different y positions. Tomography reveals a single
solitonic vortex.
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explaining the experimental findings in Ref. [1].
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interactions from the limit of Bose-Einstein condensation
of tightly bound molecules towards the regime of BCS
superfluidity [1,21]. The atom cloud contains 1–10 × 105

atoms per spin state and is cigar shaped due to a tight radial
confinement from an optical dipole trapping beam propa-
gating along the (horizontal) z direction, in combination
with a weaker, harmonic confinement along z provided
by a magnetic field curvature. The radial and axial
trapping frequencies are varied in the range of ω⊥=2π ≈
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ens the trapping potential along the vertical y direction,
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causes a phase shift of the order parameter close to π.
To observe the magnitude of the superfluid wave function,
we employ a rapid ramp to the BEC side of the Feshbach
resonance during time of flight [1,21,22]. In addition to
emptying out defects such as vortex cores [22], the ramp
effectively increases the healing length ξ of the superfluid
to observable values (typically ∼20 μm). The observed
width of the defect after the rapid ramp and time of flight
thus does not reflect the in-trap width, which is expected to
be on the order of one interparticle spacing ∼1 μm [23].
Absorption images are taken along the vertical direction
[see Fig. 1(b)].
In order to lift the ambiguity on the nature of the

observed excitation, we employ a tomographic technique
whereby only a chosen slice of the full atom cloud is
imaged after time of flight [see Fig. 1(b)]. This method
gives direct access to the local density of the 3D cloud.
Tomography is achieved by optically pumping within 10 μs
all atoms outside the desired slice into hyperfine states that
are off resonant with the imaging transition for state j1i,
predominantly state j6i. The slice is selected by masking
part of the optical pumping light with a thin wire, and
projecting the wire’s shadow onto the atom cloud. The slice
thickness is measured to be 23ð1Þ μm (¼ 2σ of a Gaussian
fit), comparable to the width of the observed solitary wave
after time of flight, and about one sixth of the transverse
cloud diameter after expansion. Since the imaging pro-
cedure is destructive, each run of the experiment provides a
single slice at a given time of the defect’s motion. Thanks
to the high degree of stability of our experiment, reliable
tomography can be built up from many repetitions of the
experiment.
Representative tomographic images for the unitary

fermionic superfluid are shown in Fig. 1(c), taken 1.6 s
after the phase imprint. A line of depletion with about 40%
contrast cuts across the entire cloud in one particular slice.
This immediately demonstrates that the solitary wave is not
a vortex ring. On average, only a specific one of the six
slices imaged features the depletion. The strong depletion is
thus not a planar soliton, as we interpreted in our previous
paper [1] . Instead, our observation is consistent with a
single, solitonic vortex. For the present experimental
conditions we observe the vortex to be horizontal in every
single repetition of the experiment. Due to the slight
anisotropy of the trap, the vortex can minimize its energy
by aligning along the short axis, while orientation along the
longer, intermediate axis is unstable [19,24,25]. Slight tilts
of the vortex into the vertical direction cause partial vortex
lines to be detected in a given slice, as seen for slice
position y ¼ −39 μm in Fig. 1(c).
In a fully 3D setting where the radial cloud size R⊥ is

much larger than the vortex core size ξ, an off-center
transverse vortex will undergo precessional motion along
equipotential lines [26,27]. Tomographic imaging enables a
measurement of the vortex position in the z-y plane [see
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FIG. 1 (color online). (a) Examples of solitary waves in 3D
Bose-Einstein condensates. Shown are simulated column density
profiles in the (z-x) plane (upper row), the local density of the
cloud in a central layer in the (z-y) plane (middle row), and
the phase (lower row) for a soliton (left), a solitonic vortex
(center), and a vortex ring (right). The images correspond to
μ=ℏω⊥ ¼ 7.31, 7.14, and 10.66. (b) Schematic of the exper-
imental tomographic imaging technique. A partially masked
optical pumping beam propagating along z (not shown) selects
a 23 μm thick slice within the expanded atom cloud for
absorption imaging along the vertical y direction. (c) Tomography
of a unitary fermionic superfluid of 6Li atoms containing a
solitary wave. Shown are density distributions of horizontal slices
selected at different y positions. Tomography reveals a single
solitonic vortex.
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Resolution of the riddle: solitonic vortex 



What is a solitonic vortex? 

•  … a solitary wave that is localised 
(exponentially) in the long dimension of a fluid 
that is confined in the other two dimensions. 

•  … a single vortex filament. 

J.B., W.P. Reinhardt, JPB 37, L113 (2001) 
J.B., W.P. Reinhardt, PRA 65, 043612 (2002) 



Solitary waves in 3D waveguides 

axially symmetric 

planar soliton  
vortex ring 

not axially symmetric 

solitonic vortex  

double ring 
more ...  



How do solitonic vortices 
form? 

Phase imprinting generates dark 
soliton 

But: dark soliton is unstable with respect 
to the snaking instability 



Snaking instability for homogeneous Fermi gas 

One can now understand the origin of dynamical instabil-
ity of a kinkwise Bose-condensed state in a cylindrical har-
monic trap; the interparticle interaction can transfer the
!axial" kink-related kinetic energy of the condensate to the
radial degrees of freedom. In order to suppress this instabil-
ity one has to significantly confine the radial motion. As the
!axial" kinetic energy per particle in the axially Thomas-
Fermi condensate is of the order of the mean-field interaction
at maximum density, n0mŨ , the radial frequency should be
the same or larger.
We have performed calculations for various ratia of the

radial to axial frequency, #$ /#z , and found the maximum
value %c of the parameter %!n0mŨ/&#$ , at which the kink-
wise Bose-condensed state is still dynamically stable, i.e., all
excitation modes have real frequencies. If %"%c , there are
excitations with imaginary frequencies, and the kinkwise
condensate is dynamically unstable.
We have solved the Gross-Pitaevskii equation
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2 !#z
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together with the Bogolyubov–de Gennes equations for the
excitations, which we write in the form
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Equation !12" gives real *+
2 , which depends continuously on

% and the aspect ratio. In the range of % and #$ /#z , where
a given mode + is dynamically unstable, *+

2'0 and the en-
ergy *+ is purely imaginary. In the region of dynamical sta-
bility *+ is purely real (*+

2"0) and, hence, at the border
between the two regions we have *+!0.
At the critical point %!%c all excitation energies *+ are

real, and one of the excitations has zero energy. This is just
the mode which for %"%c becomes dynamically unstable.
Similar to the mode of Eq. !10" in the absence of trapping
field, this mode is even with respect to inversion of the z
coordinate. The function f#!0, and f$ follows directly
from Eq. !12":

!#'$'(0 /(0" f$!0. !13"

Equation !13" is the Schrödinger equation for the motion of a
particle !with zero energy" in a cylindrically symmetric po-
tential V!&2'(0/2m(0. The potential V depends on % and
the aspect ratio. Thus, for a given ratio #$ /#z one finds the
critical value %c by selecting the parameter % such that there
is an even !nonzero" solution of Eq. !13", remaining finite at
the origin and tending to zero at infinity. This was checked
numerically on the basis of Eqs. !11"–!12" for a wide range
of % and the aspect ratio.
As it follows from our calculations, %c is minimal for

excitations with the projection of the orbital angular momen-
tum on the symmetry axis, M!1. The dependence of %c on
the aspect ratio is presented in Fig. 3. For #$'#z even an
arbitrary small interparticle interaction leads to instability,
since the axial ‘‘kink-related’’ energy per particle in the con-
densate (&#z) can be always transferred to the radial mode
with M!1 which, by itself, has energy &#$ . For #$"#z ,
the critical value %c increases with the ratio #$ /#z and
reaches %c,2.4 for #$(#z . We also found that the decay
of dynamically unstable kink states is accompanied by the
undulation of the nodal plane and the formation of vortex-
antivortex pairs, similar to the decay of dark optical solitons
-16..
The criterion of dynamical stability of a kinkwise conden-

sate, %'%c , can be satisfied in the conditions of current
BEC experiments. For a rubidium condensate in a cylindrical
trap with #$/200 Hz(#z , it requires the maximum den-
sity n0m)1014 cm#3.
Although for %'%c the kinkwise condensate is dynami-

cally stable, there is a thermodynamic instability related to
the presence of an excitation with negative energy. For a
very strong radial confinement of the axially Thomas-Fermi
kinkwise condensate (&#$(n0mŨ(&#z ;%*%c), we calcu-
late a negative excitation energy close to **!#&#z /!2
characteristic for the 1D Thomas-Fermi kinkwise condensate
in a harmonic trap.
In the 1D case we calculate the negative excitation energy

analytically by solving the Bogolyubov–de Gennes equa-
tions at distances z from the origin, much smaller than the
Thomas-Fermi size of the condensate R!(2)/m#z

2)1/2. We
represent (0 and the excitation wave functions as a series of
expansion in powers of small parameter 0!&#z /) . Then, in
the same dimensionless units as in the absence of trapping
field, the Gross-Pitaevskii equation is given by Eq. !1" with
an extra term 02z2(0/2 on the left-hand side. Confining our-
selves to the expansion up to 02, we obtain

FIG. 2. Imaginary part of the excitation energy !in units of )" vs
the transverse momentum k !in units of l#1) for a kinkwise con-
densate in the absence of a trapping field.

FIG. 3. Critical parameter %c vs the aspect ratio for a kinkwise
condensate in a cylindrical trap.
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