# Introduction to Integrability in AdS/CFT: Lecture 2

Rafael Nepomechie
University of Miami

Introduction

#### Recall:

- $\circ$   $\mathcal{N}=4$  SYM is a (super)conformal field theory
- lacktriangle In planar limit, has 1 free parameter  $\lambda$
- We want to determine  $\Delta(\lambda)$  for all (local, gauge-invariant, single-trace) operators, for all  $\lambda$
- 1-loop (weak coupling) mixing matrix for scalars

SU(2) subsector: 
$$\operatorname{tr} X(x)^M Z(x)^{L-M} + \dots$$

$$\Gamma = \frac{\lambda}{8\pi^2} H, \quad H = \sum_{l=1}^{L} (1 - \mathcal{P}_{l,l+1})$$

quantum spin chain Hamiltonian

Problem: to determine eigenvectors & eigenvalues

### Approach used by Bethe is now known as "coordinate" Bethe ansatz

A different approach was developed later, called Quantum Inverse Scattering Method (QISM) & "algebraic" Bethe ansatz

[Yang, Gaudin, Baxter, Zamolodchikov², Faddeev, Kulish, Sklyanin, ...]

- Each approach has its advantages/disadvantages
- It is essential to learn both for AdS/CFT!

(also for applications in statistical mechanics, condensed matter,...)

#### Plan

- Today: quantum integrability "toolkit":
  - o quantum spin chains
  - Yang-Baxter equations
  - o quantum inverse scattering method
  - algebraic Bethe ansatz
  - analytical Bethe ansatz
- ${\color{red} \circ}$  Subsequent: coordinate Bethe ansatz, & application to  ${\mathcal{N}}=4$  SYM

Quantum spin chains

#### Example: system of L fixed particles with spin 1/2

The Hilbert space is  $V=\mathcal{C}^2$ 

2 dims

with elements 
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, x_i \in \mathcal{C}$$

The observables are the Pauli matrices  $\vec{\sigma}=(\sigma^x,\sigma^y,\sigma^z)$ 

For L>1, need tensor product

For vectors: 
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \otimes \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 y_1 \\ x_1 y_2 \\ \hline x_2 y_1 \\ x_2 y_2 \end{pmatrix}$$

#### Permutation matrix

$$\mathcal{P}_{12} \equiv \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathcal{P}_{12} \begin{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \otimes \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \otimes \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

#### check:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 y_1 \\ x_1 y_2 \\ \hline x_2 y_1 \\ x_2 y_2 \end{pmatrix} = \begin{pmatrix} x_1 y_1 \\ x_2 y_1 \\ \hline x_1 y_2 \\ x_2 y_2 \end{pmatrix} \checkmark$$

#### Tensor product of matrices:

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \otimes \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} & x_{11}y_{12} & x_{12}y_{11} & x_{12}y_{12} \\ \hline x_{11}y_{21} & x_{11}y_{22} & x_{12}y_{21} & x_{12}y_{22} \\ \hline x_{21}y_{11} & x_{21}y_{12} & x_{22}y_{11} & x_{22}y_{12} \\ \hline x_{21}y_{21} & x_{21}y_{22} & x_{22}y_{21} & x_{22}y_{22} \end{pmatrix}$$

The Hilbert space is  $V \otimes V$ 

2<sup>2</sup> dims

The observables are

$$\vec{\sigma}_1 \equiv \vec{\sigma} \otimes I \,, \quad \vec{\sigma}_2 \equiv I \otimes \vec{\sigma}$$

$$I = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

Related by permutation matrix

$$\vec{\sigma}_2 = \mathcal{P}_{12} \ \vec{\sigma}_1 \ \mathcal{P}_{12}$$

$$\vec{\sigma}_1 = \mathcal{P}_{12} \ \vec{\sigma}_2 \ \mathcal{P}_{12}$$

Subscript denotes the vector space on which the operator acts nontrivially!

general L: The Hilbert space is  $V \otimes \cdots \otimes V$  2<sup>L</sup> dims

The observables are

$$ec{\sigma}_n = I \otimes \cdots I \otimes ec{\sigma} \otimes I \otimes \cdots \otimes I$$
  $n=1,\ldots,L$  1 n

Hamiltonian? Many possibilities! We consider here

$$H = \frac{1}{2} \sum_{n=1}^{L} (I - \vec{\sigma}_n \cdot \vec{\sigma}_{n+1}) = \sum_{n=1}^{L} (I - \mathcal{P}_{n,n+1})$$

PBCs 
$$\vec{\sigma}_{L+1} \equiv \vec{\sigma}_1$$

"Heisenberg (XXX) quantum spin chain"

- 1-dim model of ferromagnetism
- @ 1-loop mixing matrix in SU(2) subsector of  $\mathcal{N}=4$  SYM

Basic problem:  $H|\psi\rangle=E|\psi\rangle$ 

$$H|\psi\rangle = E|\psi\rangle$$

H is 2<sup>L</sup> x 2<sup>L</sup> matrix ...

Brute-force diagonalization is not an option for L > 10

Fortunately, as we shall see, this model is integrable; so there ARE other options!

Hint of integrability: H commutes with

$$\sum_{n=1}^{L} \vec{\sigma}_n \cdot (\vec{\sigma}_{n+1} \times \vec{\sigma}_{n+2})$$

There is a beautiful, systematic way of constructing such conserved quantities & solving (\*)

To explain, we must digress...

Yang-Baxter equation (YBE)

Consider "R-matrix":

$$R(u) \equiv uI \otimes I + i\mathcal{P} = \begin{pmatrix} u+i & & & \\ & u & i & \\ \hline & i & u & \\ & & u+i \end{pmatrix} = \begin{pmatrix} a & & & \\ & b & c & \\ \hline & c & b & \\ & & a \end{pmatrix}$$

$$a = u + i$$
,  $b = u$ ,  $c = i$ 

u: "spectral parameter"

[eventually, parameter of the generating function for conserved quantities]

We regard R(u) as an operator on  $V\otimes V$ 

Let's now use R(u) to construct operators on  $V \otimes V \otimes V$ 

## 

$$R_{12}(u) \equiv R(u) \otimes I = \begin{pmatrix} a & & & & & \\ & b & c & & \\ \hline & c & b & & \\ & & a \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & & & & \\ & b & c & & \\ & & c & b & \\ \hline & & c & b & \\ & & c & b & \\ \hline & & & a & \\ & & & a & \\ \end{pmatrix}$$

$$R_{23}(u)\equiv I\otimes R(u)=\left(egin{array}{c|c}1&0\0&1\end{array}
ight)\otimes \left(egin{array}{c|c}a&&&&&&&\\\hline &b&c&&&&&\\\hline &c&b&&&&&\\\hline &&c&b&&&&\\\hline &&&a&&&&\\\hline &&&&a&&&\\\hline &&&&&a&&\\\hline &&&&&c&b&c\\\hline &&&&&c&b&c\\\hline &&&&&c&b&c\\\hline &&&&&c&b&c\\\hline &&&&&&a\end{array}
ight)$$

$$R_{13}(u) \equiv \mathcal{P}_{23} \ R_{12}(u) \ \mathcal{P}_{23}$$

$$\mathcal{P}_{23} \equiv I \otimes \mathcal{P} = \left( egin{array}{c|c} 1 & 0 \ 0 & 1 \end{array} 
ight) \otimes \left( egin{array}{c|c} 1 & 1 \ \hline 1 & 1 \ \hline \end{array} 
ight) = \left( egin{array}{c|c} 1 & 1 \ \hline \hline 1 & 1 \ \hline \hline \end{array} 
ight) = \left( egin{array}{c|c} 1 & 1 \ \hline \hline \end{array} 
ight)$$

$$R_{13}(u) = \begin{pmatrix} a & & & & & \\ & b & & c & & \\ \hline & & a & & & \\ \hline & & c & & b & & \\ \hline & & & & a & & \\ \hline & & & & & b & & \\ \hline & & & & & a & & \\ \hline & & & & & b & & \\ \hline & & & & & b & & \\ \hline & & & & & a & & \\ \hline & & & & & a & & \\ \hline \end{array}$$

#### Can now easily check that

$$R_{12}(u-u')$$
  $R_{13}(u)$   $R_{23}(u') = R_{23}(u')$   $R_{13}(u)$   $R_{12}(u-u')$ 

- This is the famous YBE!
- Can regard as an equation to be solved for R(u)
- Many families of solutions known
- We are considering here just the simplest, SU(2)-invariant, solution  $[g\otimes g\,,R(u)]=0\,,\quad g\in SU(2)$



Question: Why should we care about this?

Answer: As we shall now see, for each regular  $(R(0) \propto \mathcal{P})$  solution of YBE, we can construct a local integrable spin chain!

Quantum Inverse Scattering Method (QISM)

#### Basic idea: Use R-matrix to construct the Hamiltonian and higher local conserved quantities

key step: introduce an additional copy of vector space V "auxiliary" space

$$T_{\mathbf{0}}(u) \equiv R_{\mathbf{0}L}(u) \cdots R_{\mathbf{0}1}(u)$$
 "monodromy matrix"



#### "Fundamental Relation" (FR):

$$R_{00'}(u-u') \ T_0(u) \ T_{0'}(u') = T_{0'}(u') \ T_0(u) \ R_{00'}(u-u')$$

#### Proof (L=2):

$$LHS = R_{00'}(u - u') \ R_{02}(u) \ R_{01}(u) \ R_{0'2}(u') \ R_{0'1}(u')$$
 All spaces different 
$$= R_{00'}(u - u') \ R_{02}(u) \ R_{0'2}(u') \ R_{01}(u) \ R_{0'1}(u')$$
 YBE 
$$= R_{0'2}(u') \ R_{02}(u) \ R_{00'}(u - u') \ R_{01}(u) \ R_{0'1}(u')$$
 YBE 
$$= R_{0'2}(u') \ R_{02}(u) \ R_{0'1}(u') \ R_{01}(u) \ R_{00'}(u - u')$$
 All spaces different 
$$= R_{0'2}(u') \ R_{0'1}(u') \ R_{02}(u) \ R_{01}(u) \ R_{00'}(u - u') = RHS$$

#### Graphical proof:

$$R_{00'}(u-u') \ T_0(u) \ T_{0'}(u') = T_{0'}(u') \ T_0(u) \ R_{00'}u - u')$$



$$t(u) = \operatorname{tr}_0 T_0(u)$$

"transfer matrix"

Acts on 
$$V\otimes\cdots\otimes V$$
 (same as spin-chain Hamiltonian!)

1-parameter family of commuting operators:

$$[t(u), t(u')] = 0$$

$$R_{00'}(u-u') \ T_0(u) \ T_{0'}(u') = T_{0'}(u') \ T_0(u) \ R_{00'}(u-u')$$
 FR

$$R_{00'}(u-u') T_0(u) T_{0'}(u') R_{00'}(u-u')^{-1} = T_{0'}(u') T_0(u)$$

$$t(u) = \operatorname{tr}_0 T_0(u)$$

"transfer matrix"

Acts on 
$$V\otimes \cdots \otimes V$$
 (same as spin-chain Hamiltonian!)

1-parameter family of commuting operators:

$$[t(u), t(u')] = 0$$

Proof:

$$R_{00'}(u-u') \ T_0(u) \ T_{0'}(u') = T_{0'}(u') \ T_0(u) \ R_{00'}(u-u')$$
 FF

trace

$$\operatorname{tr}_{00'} R_{00'}(u - u') T_0(u) T_{0'}(u') R_{00'}(u - u')^{-1} = \operatorname{tr}_{00'} T_{0'}(u') T_0(u)$$

cyclic property of trace

$$\operatorname{tr}_{00'} T_0(u) \ T_{0'}(u') = \operatorname{tr}_{00'} T_{0'}(u') \ T_0(u)$$

$$t(u) \ t(u') = t(u') \ t(u)$$

The transfer matrix is a generating function for local conserved quantities:

$$\ln t(u) = \sum_{n=0}^{\infty} \frac{u^n}{n!} H_n$$

Can show that  $H_1$  is the Heisenberg Hamiltonian,  $H_2$  is the next conserved charge, etc.

$$[t(u), t(u')] = 0 \quad \Rightarrow \quad [H_n, H_m] = 0$$

Infinitely many conserved commuting local quantities integrable!

Starting from other regular R-matrices, obtain corresponding local integrable spin-chain Hamiltonians

#### $oldsymbol{\circ}$ interpretation of $H_0$

$$t(0) = i^L U$$
,  $U = \mathcal{P}_{12} \mathcal{P}_{23} \cdots \mathcal{P}_{L-1,L}$ 

$$UA_nU^{\dagger} = A_{n+1}$$

$$U = e^{iP}$$

$$H_0 = \ln t(0) \sim P$$

U: 1-site shift operator

P: "momentum"

ø eigenvalues of conserved charges

$$[t(u), t(u')] = 0$$

there exist eigenstates of transfer matrix that do not depend on spectral parameter

$$|t(u)|\Lambda\rangle = \Lambda(u)|\Lambda\rangle$$

If we can determine  $\Lambda(u)$  , then we can get eigenvalues  $h_n$  of all charges  $H_n$  :

$$h_n = \frac{d^n}{du^n} \ln \Lambda(u) \Big|_{u=0}$$

Algebraic Bethe ansatz

So now we know that the Heisenberg model is integrable.

Question: But are we any closer to solving the model?

(i.e., finding eigenstates & eigenvalues of transfer matrix)

Answer: Yes!

We shall now identify certain creation operators. Acting with them on the vacuum state

$$|0
angle \equiv \underbrace{\begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix}}_L$$
 all spins up

we can construct the eigenstates! (~ harmonic oscillator)

#### Recall that the monodromy matrix acts on

Set

$$T_0(u) = \left(egin{array}{ccc} A(u) & B(u) \ C(u) & D(u) \end{array}
ight) \qquad A(u),\ldots,D(u) \quad {
m act} \ V\otimes\cdots\otimes V$$

$$t(u) = \text{tr}_0 T_0(u) = A(u) + D(u)$$

$$B(u)|0\rangle \neq 0$$
 creation

$$A(u),\dots,D(u)$$
 act on  $V\otimes \dots \otimes V$   $\uparrow$   $\uparrow$   $\downarrow$   $\downarrow$ 

$$C(u)|0\rangle = 0$$
 annihilation

Assume that the eigenstates of t(u) are given by

$$|u_1, \dots, u_M\rangle \equiv B(u_1) \cdots B(u_M) |0\rangle$$

To compute eigenvalues, must move t(u) = A(u) + D(u) past each of the B's

FR  $\Rightarrow$  commutation relations:

$$A(u) \ B(u') = \left(\frac{u - u' - i}{u - u'}\right) B(u') \ A(u) - \frac{i}{u - u'} B(u) \ A(u')$$

$$D(u) \ B(u') = \left(\frac{u - u' + i}{u - u'}\right) B(u') \ D(u) - \frac{i}{u - u'} B(u) \ D(u')$$

Using only first terms, get

$$A(u)|u_1, \dots, u_M\rangle = \prod_{k=1}^M \left(\frac{u - u_k - i}{u - u_k}\right) B(u_1) \cdots B(u_M) \underbrace{A(u)|0\rangle}_{(u+i)^L|0\rangle}$$

$$D(u)|u_1, \dots, u_M\rangle = \prod_{k=1}^M \left(\frac{u - u_k + i}{u - u_k}\right) B(u_1) \cdots B(u_M) \underbrace{D(u)|0\rangle}_{u^L|0\rangle}$$

$$t(u)|u_1,\ldots,u_M\rangle = \Lambda(u)|u_1,\ldots,u_M\rangle +$$
 "unwanted"

$$\Lambda(u) = (u+i)^{L} \prod_{k=1}^{M} \left( \frac{u - u_{k} - i}{u - u_{k}} \right) + u^{L} \prod_{k=1}^{M} \left( \frac{u - u_{k} + i}{u - u_{k}} \right)$$

So far,  $\{u_1, \ldots, u_M\}$  are arbitrary.

Can show that the "unwanted" terms cancel if  $\{u_1, \dots, u_M\}$  satisfy the "Bethe equations" (BEs):

$$\left(\frac{u_j+i}{u_j}\right)^L = \prod_{\substack{k=1\\k\neq j}}^M \frac{u_j-u_k+i}{u_j-u_k-i}, \quad j=1,\cdots,M$$

$$u_j \mapsto u_j - \frac{i}{2}$$

$$\left(\frac{u_j + \frac{i}{2}}{u_j - \frac{i}{2}}\right)^L = \prod_{\substack{k=1\\k \neq j}}^M \frac{u_j - u_k + i}{u_j - u_k - i}, \quad j = 1, \dots, M$$

In principle, can solve BEs for  $\{u_1,\ldots,u_M\}$  & therefore obtain transfer matrix eigenvalues  $\Lambda(u)$ 

$$P \sim \ln t(0) \qquad \Rightarrow \quad P \sim \ln \Lambda(0) = \left| \frac{1}{i} \sum_{k=1}^{M} \ln \left( \frac{u_k + \frac{i}{2}}{u_k - \frac{i}{2}} \right) \right| \pmod{2\pi}$$

$$H \sim \frac{d}{du} \ln t(u) \Big|_{u=0} \quad \Rightarrow \quad E \sim \frac{d}{du} \ln \Lambda(u) \Big|_{u=0} = \left| \sum_{k=1}^{M} \frac{1}{u_k^2 + \frac{1}{4}} \right|$$

Note:  $\{u_1, \ldots, u_M\}$  must be distinct

su(2) symmetry:  $\left| \vec{S}, t(u) \right| = 0$ 

$$\left[\vec{S}, t(u)\right] = 0$$

$$\vec{S} = \frac{1}{2} \sum_{n=1}^{L} \vec{\sigma}_n$$

 $t(u), \vec{S}^2, S^z$ can simultaneously diagonalize

$$|\vec{S}^2|u_1,\ldots,u_M\rangle = s(s+1)|u_1,\ldots,u_M\rangle$$

$$S^z|u_1,\ldots,u_M\rangle=m|u_1,\ldots,u_M\rangle$$

Bethe states are su(2) highest-weight states:

$$S^+|u_1,\ldots,u_M\rangle=0$$

$$s = m = \frac{L}{2} - M$$

$$\Rightarrow \qquad [S^z, B(u)] = -B(u) \qquad S^z|0\rangle = \frac{L}{2}|0\rangle$$

$$s \ge 0 \qquad \Rightarrow \qquad M \le \frac{L}{2}$$

The lower-weight states can be obtained by acting with S

Example: L=4 
$$M \leq \frac{L}{2}$$
  $\therefore$   $M = 0, 1, 2$ 

$$M \leq \frac{L}{2}$$

$$M = 0, 1, 2$$

$$s = \frac{L}{2} - M = 2 - M$$

| M | $\{u_k\}$                       | Р        | Е | S | degeneracy (2s+1) |
|---|---------------------------------|----------|---|---|-------------------|
| 0 | -                               | 0        | 0 | 2 | 5                 |
| 1 | 1/2                             | $\pi/2$  | 2 | 1 | 3                 |
| 1 | -1/2                            | $-\pi/2$ | 2 | 1 | 3                 |
| 1 | 0                               | $\pi$    | 4 | 1 | 3                 |
| 2 | i/2,-i/2                        | $\pi$    | 2 | 0 | 1                 |
| 2 | $1/(2\sqrt{3}), -1/(2\sqrt{3})$ | 0        | 6 | 0 | 1                 |

total: 16 = 2<sup>4</sup> ✓

Matches with direct diagonalization of H ✓

Hypothesis: For any L, Bethe ansatz gives complete set of (highest-weight) states

Analytical Bethe ansatz

Fact:  $\Lambda(u)$  are polynomials in u, of degree L

Proof: Recall

$$t(u) = \operatorname{tr}_0 R_{0L}(u) \cdots R_{01}(u), \quad R(u) = uI + i\mathcal{P}$$

$$t(u) = \sum_{n=0}^{L} t_n u^n$$

 $t_n$ : u-independent matrices

$$[t(u), t(u')] = 0 \quad \Rightarrow \quad [t_n, t_m] = 0$$

can diagonalize simultaneously!

$$|t_n|\Lambda\rangle = \Lambda_n|\Lambda\rangle$$

.. 
$$\Lambda(u) = \sum_{n=0}^L \Lambda_n u^n$$
 polynomial in u, of degree L

Corollary:  $\Lambda(u)$  are regular (no poles) for finite u

#### Useful short-cut for finding $\Lambda(u)$ & BEs:

Vacuum eigenvalue:

$$t(u)|0\rangle = \Lambda^{(0)}(u)|0\rangle$$

$$\Lambda^{(0)}(u) = (u+i)^{L} + u^{L}$$

Assume general eigenvalue is "dressed" vacuum eigenvalue:

$$\Lambda(u) = (u+i)^{L} \frac{Q(u-i)}{Q(u)} + u^{L} \frac{Q(u+i)}{Q(u)}$$

$$Q(u) = \prod_{j=1}^{M} (u - u_j)$$
 zeros  $u_j$  still to be determined

 $\Lambda(u)$  must not have pole at  $u_j \implies$ 

$$(u_j + i)^L Q(u_j - i) + u_j^L Q(u_j + i) = 0$$

Bethe equations!

Assumed only simple poles - i.e., distinct Bethe roots

Higher-order poles  $\Rightarrow$  spurious equations

Epilogue

Returning to  $\mathcal{N}=4$  SYM...

In SU(2) subsector 
$$\operatorname{tr} X(x)^M Z(x)^{L-M} + \dots$$

1-loop anomalous dimensions:  $\gamma = \frac{\lambda}{8\pi^2} \sum_{k=1}^{M} \frac{1}{u_k^2 + \frac{1}{4}}$ 

$$\gamma = \frac{\lambda}{8\pi^2} \sum_{k=1}^{M} \frac{1}{u_k^2 + \frac{1}{4}}$$

$$\left(\frac{u_j + \frac{i}{2}}{u_j - \frac{i}{2}}\right)^L = \prod_{\substack{k=1\\k \neq j}}^M \frac{u_j - u_k + i}{u_j - u_k - i}, \quad j = 1, \dots, M$$

cyclicity 
$$\Rightarrow$$
  $P = \frac{1}{i} \sum_{k=1}^{M} \ln \left( \frac{u_k + \frac{i}{2}}{u_k - \frac{i}{2}} \right) = 0$ 

#### Example: L=4

| M | $\{u_k\}$                       | Р       | Е | S | degeneracy (2s+1) |
|---|---------------------------------|---------|---|---|-------------------|
| O |                                 | 0       | 0 | 2 | 5                 |
| 1 | 1/2                             | $\pi/2$ | 2 | 1 | 3                 |
| 1 | -1/2                            | $\pi/2$ | 2 | 1 | 3                 |
| 1 | 0                               | $\pi$   | 4 | 1 | 3                 |
| 2 | i/2,-i/2                        | $\pi$   | 2 | 0 | 1                 |
| 2 | $1/(2\sqrt{3}), -1/(2\sqrt{3})$ | 0       | 6 | 0 | 1                 |

Returning to  $\mathcal{N}=4$  SYM...

In SU(2) subsector 
$$\operatorname{tr} X(x)^M Z(x)^{L-M} + \dots$$

1-loop anomalous dimensions:

$$\gamma = \frac{\lambda}{8\pi^2} \sum_{k=1}^{M} \frac{1}{u_k^2 + \frac{1}{4}}$$

$$\left(\frac{u_j + \frac{i}{2}}{u_j - \frac{i}{2}}\right)^L = \prod_{\substack{k=1\\k \neq j}}^M \frac{u_j - u_k + i}{u_j - u_k - i}, \quad j = 1, \dots, M$$

cyclicity 
$$\Rightarrow$$
  $P = \frac{1}{i} \sum_{k=1}^{M} \ln \left( \frac{u_k + \frac{i}{2}}{u_k - \frac{i}{2}} \right) = 0$ 

Many questions remain:

- other operators?
- higher loops?

Stay tuned!