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Recall:
® N=4 SYM is a (super)conformal field theory

@ In planar limit, has 1 free parameter )

@ We want to determine A()\) for all (local,
gauge-invariant, single-trace) operators, for all A

@ 1-loop (weak coupling) mixing matrix for scalars

SU(2) subsector: tr X(2)MZ(z)1™™ + ...

L

\ quantum
i = 8—2H, o] (1 o 77[,14_1) spin chain
A g Hamiltonian

Problem: to determine eigenvectors & eigenvalues

Solved exactly! [Bethe 31



Approach used by Bethe is now known as
"coordinate” Bethe ansatz

A different approach was developed later, called
Quantum Inverse Scattering Method (QISM)
& "algebraic” Bethe ansatz

[Yang, Gaudin, Baxter, Zamolodchikov?, Faddeey, Kulish, Sklyanin, ...]

@ Each approach has its advantages/disadvantages

@ It is essential to learn both for AAS/CFT!

(also for applications in
statistical mechanics, condensed matter,...)



Plan

@ Today: quantum integrability “toolkit”:

@ quantum spin chains

@ Yang-Baxter equations

@ quantum inverse scattering method

@ algebraic Bethe ansatz

@ analytical Bethe ansatz

@ Subsequent: coordinate Bethe ansatz,
& application to N=4 SYM






Example: system of L fixed particles with spin 1/2

L=1: The Hilbert space is V = C? 2 dims
L1
with elements 7 = (@), Lig—8

The observables are the Pauli matrices & = (¢”,0",0%)

For L>1, need tensor product

L1Y1

X1 1 8
For vectors: < > R (y > — 142
L2 Y2 L2Y1

L2Y2




Permutation matrix

check:
15300 ) L1Y1
B0 ek L1Y2
00 L« S L2Y1
O 20520 - F L2Y2

GG SE  —

L1Y1
L2

o = OO

L1Y2
L2Y2

COERED /=10
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p=ln ORGS0
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Tensor product of matrices:

L11
L21

L12
L22

4

Y11
Y21

Y12
Y22

>:

/ T11Y11 L11Y12 | L12Y11  T12Y12
L11Y21 L11Y22 | T12Y21 T12Y22
L21Y11 T21Y12 | T22Y11 T22Y12

\ L21Y21  L21Y22 | L22Y21 T22Y22




L=2:  The Hilbert space is V &V 2¢ dims

) )
1 2
The observables are
6155(@], 5QEI®5 ]:(é?)

Related by permutation matrix

09 = P12 01 P12

01 = P12 02 P12

Subscript denotes the vector space on which the
operator acts nontrivially!



general L: The Hilbert spaceis V®---®V 2- dims

The observables are

On =R, - I'® 0 Qe Sl = A
) I
| n L

Hamiltonian? Many possibilities! We consider here

1= <
= o2 U — o st (e T Rk 1)
n=1

Qi

PBCs 0rL+1 =01
"Heisenberg (XXX) quantum spin chain”

@ 1-dim model of ferromagnetism

@ 1-loop mixing matrix in SU(2) subsector of N=4 SYM



Basic problem: Hly) = Ely) (+)
H is 2" x 2" matrix
Brute-force diagonalization is not an option for L > 10

Fortunately, as we shall see, this model is intfegrable;
so there ARE other options!

Hint of integrability: H commutes with

L
Z 5371 : (5n+1 X En—I—Q)

1=

There is a beautiful, systematic way of
constructing such conserved quantities & solving (x)

To explain, we must digress...






Consider “"R-matrix”:

/u+7j . \ /a \
Ru)=ul ® I +iP|= e e b | c
1| U Eh

\ u—l—i/ \ a,)

u: "spectral parameter”

[eventually, parameter of the generating function
for conserved quantities]

We regard R(u) as an operator on V @V

Lets now use R(u) to construct operators on VeV oV



Operators on V@V @ V:

bt

B j

o o LG
Ja :

el

i ;
\ @ )
L )







Can now easily check that

ng(u S u’) ng(U) Rgg(u/) — Rgg(u/) ng(U) ng(u T u’)

@ This is the famous Y BE!
@ Can regard as an equation to be solved for R(u)
@ Many families of solutions known

@ We are considering here just the simplest,
SU(2)-invariant, solution |[g®g,R(u)] =0,

- )%




Question: Why should we care about this?

Answer: As we shall now see,
for each regular (£(0) < P) solution of YBE,
we can construct a local integrable spin chain!



Quantum Inverse
Scattering Method
(QISM)



Basic idea: Use R-matrix to construct the Hamiltonian
and higher local conserved quantities

key step: introduce an additional copy of vector space V
"auxiliary” space

VRVe: -V

i f
0] | L

To(u) = Ror.(u)--- Roi1(u) | “monodromy matrix”




“Fundamental Relation” (FR):

ROO/ (u =3 u’) TO (u) TO/ (u’) — TO/ (u’) TO (u) ROO/ (u = u’)

Proof (L=2):
LHS — RO()/ (u o u’) Roz(u) Rgl(u) RQ/Q(UI) R()/l(u/)

>< All spaces different

— R()()/ (u 3 u’) RQQ (U) Rolg(u/) Rgl(U) Rofl(u/)
| | YBE

— RO/Q(U/) R()Q (U) ROO/ (u = u’) R01 (U) qu(u’)
| | YBE

— RO/Q(UI) ROQ(U) R()/l(u/) Rol(u) RQO/ (u i u’)

‘><A All spaces different

— RQ/Q(U/) R()/l(u/) ROQ (U) R()l (U) ROO’ (u s u/) — RHS
L]



Graphical proof:

RO()/ (u o u’) T() (u) T()/ (’U/) — TO/ (u') T() (U) R()()/u e u')




t(u) = tro To(u) “transfer matrix”

Actson V®---®V (same as spin-chain Hamiltonian!)
i t
1 L

l-parameter family of commuting operators:




t(u) = tro To(u) “transfer matrix”

Actson V®---®V (same as spin-chain Hamiltonian!)
i t
1 L

l-parameter family of commuting operators:

[t(u), t(u')] =0

Proof: Roor (u —u') To(u) Ty (u') = Tor (u') To(uw) Roor(u —u')  FR
trace
trOO/Mu = u’) T() (U) TO/ (u’)Mu i u’)_l e tro()/ T()/ (u/) T() (U)
cyclic property of trace troor T (u) To (u/) — troor 1o (u’) 1y (u)

t(u) t(u') = t(u') t(u)



The transfer matrix is a generating function
for local conserved quantities:

@)

un
Int(u) = L
nt(u) 2 o

Can show that H; is the Heisenberg Hamiltonian,
H> is the next conserved charge, efc.

#(u) tH =0 e H T 0

Infinitely many conserved commuting local quantities
integrable!

Starting from other regular R-matrices, obtain
corresponding local integrable spin-chain Hamiltonians



@ interpretation of Hy

t0) =¢"U. i U= PP Pr ey
UA U = 4,14 U: 1-site shift operator

[ gl P: “momentum”



@ eigenvalues of conserved charges
t(u) , t(u’)] =0

=  there exist eigenstates of transfer matrix
that do not depend on spectral parameter

t(u)|A) = Alu)|A)

If we can determine A(u) ,
then we can get eigenvalues %, of all charges H :

Py 4 In A(u)

du” u=0






So now we know that the Heisenberg model is integrable.

Question: But are we any closer to solving the model?

(i.e., finding eigenstates & eigenvalues of transfer matrix)

Answer: Yes!

We shall now identify certain creation operators.

Acting with them on the vacuum state

g | 1 t soi
\>:<O>®---®<O> all spins up

we can construct the eigenstates! (~ harmonic oscillator)



Recall that the monodromy matrix acts on

VRVe: -V

4 A f
Set 0 1 L
A(u)w 7D(u) act on
i o BUH)
T”(“)‘<c<u> D<u>> .6 e V
t t
| L
t(u) = trg To(u) = A(u) + D(u)
B(u)|0) #0 creation C(u)]0) =0 annihilation

Assume that the eigenstates of ¢(u) are given by




To compute eigenvalues, must move t(u) = A(u) + D(u)

past each of the Bs

FR = commutation relations:

Alu) BOSE (“;fu_ Z) B(w') Afu) ~ - _Z _ B(u) A(u)
D(u) B(/) = (“;f‘: Z) B(w') D(u) ~ - s _ B(u) D(u)
Using only first terms, get
Al f[l (“;f’;;ﬂ B(ur) -+ Bluy) Aw)0)
e (w210
D e ﬁ (“;f’iﬁ B(ur) - Bluar) D(w)|0)



t(w)|ur, ... ,upm) = Alu)lug, ... ,up) + “unwanted”

A(u):(u+i)Lﬁ (u;fkw:z> _|_uLﬁ (u—ukJri)

U —u
ity = k

So far, {u1,...,un} are arbitrary.

Can show that the "unwanted” terms cancel
if {wi,...,un} satisfy the "Bethe equations” (BEs):

R G M ;
U 4 () U sis U, ()
P :H j k—I—.’ G oy
U TR )

J 1.~

; k7J




In principle, can solve BEs for {ui,...,un}

& therefore obtain transfer matrix eigenvalues A(u)

M :
1 i
e L
M
d d 1
e, E~ — lIlA u ==
H~—-Int(w)) = o InAw)] ;::1 w2+ 1

Note: {ui,...,up} must be distinct



L
su(2) symmetry: {5’ t(ﬂ)} =0 S % D 7,

can simultaneously diagonalize  t(u), S%, S~
S2uq, ..o un) = s(s 4+ Dur, ..o uar)

ST s T U i e

Bethe states are su(2) highest-weight states:

STl g = ()
e
L 2 L
s >0 = Mgg

The lower-weight states can be obtained by acting with S



Example: L=4 M < g Mei— 1.2
Si— g S0\
M {ur} P E degeneracy (2s+1)
0 - 0] 0) 5
1 1/2 T2 2 3
1 -1/2 —7/2 2 3
1 o) A8 4 3
2 i/2,-i/2 (s 2 1
2 1/(2v/3), —1/(2V/3) 0 6 1

total: 16 = 24

Matches with direct diagonalization of H

Hypothesis: For any L, Bethe ansatz gives complefe set

of (highest-weight) states







Fact: A(u) are polynomials in u, of degree L
Proof: Recall
t(u) = trg Ror(u) - Ro1(u), R(u)=ul+1P
—

L
t(u) et Dbt tn: u-independent matrices
n=0

can diagonalize

t{u) , tH{u) =0 "= Sty s =1 :
simultaneously!

tn|A> g An‘A>

L
A(w) =) Au"  polynomial in u, of degree L
n=0

Corollary:| A(u) are regular (no poles) for finite u




Useful short-cut for finding A(u) & BEs: [Reshetikhin, ..]

Vacuum eigenvalue:

t(u)|0) = A (u)|0)

AO (y) = (u + 9)F + ot

Assume general eigenvalue is "dressed” vacuum eigenvalue:

pQlu—1) uLQ(qui)

M= o e

M
Qu) = | [ (u—uy) zeros Y; still to be determined
j=1

A(u) must not have pole at % =
(uj +4)*Q(u; — 8) + ufQ(uj +14) = 0 Bethe equations!



Assumed only simple poles - i.e., distinct Bethe roots

Higher-order poles =—> spurious equations






Returning to N=4 SYM...

In SU(2) subsector  trX(z)"Z(z)"~™ +..

M
. | A
1-loop anomalous dimensions: . Z

L .

Uj T3 HU'—u 7y

J 9 i i k R

. { -9 T .]_]-77M
k7]

e
cyclicity = P=- Zln (uk 2.)0

uk——

rblr—\



Example: L=4

M {ug} P E S degeneracy (2s+1)
0) - 0] 0) 2 5
1 1./9 e o 1 2
1 L. ANars [ | J
) v, F 4 ) 3
2 H2=if2 7 2 6 t
2 1/(2v3),-1/(2V3) 0 6 0 1




Returning to N=4 SYM...

In SU(2) subsector  trX(z)"Z(z)" " +..

M
. . A
1-loop anomalous dimensions: s Z

o
(] 3) - a2, g-1,.M
U — Up — &

g T
k]
Uk + %
cyclicity = P= Zln S
2
Many questions remain:
@ other operators? Stay tuned!

@ higher loops?

Ma



