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Abstract

A series of four lectures given at the Australian National University in December
2011 for the 2nd Asia-Pacific Summer School in Mathematical Physics/22nd Canberra
International Physics Summer School.

1 Anti-de Sitter Space

The geometry of AdS space plays a crucial role in many aspects of holography1 although
there is some work on holography for more general backgrounds [3, 4]. We will more or less
discuss AdS5 but most features of AdS space are dimension independant.

Algebraically, AdS5 space is given by the hypersurface

L2 = −X2
0 −X2

1 +X2
2 +X2

3 +X2
4 +X2

5 (1)

for some constant R. The metric on AdS5 is induced from the flat metric of signature (2, 4)

ds2
2,4 = −dX2

0 − dX2
1 + dX2

2 + dX2
3 + dX2

4 + dX2
5 . (2)

Perhaps the two timelike directions of the ambient cause alarm but one should reassure
oneself that on the hypersurface given by (1) there is just one timelike direction.

1Two references for details regarding AdS space are [1] and [2]
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1.1 Global AdS

These cartestian co-ordinates are an inconvenient parameterization of AdS5, one more natural
choice of co-ordinates is

X0 = L cosh ρ cos τ , (3)

X1 = L cosh ρ sin τ , (4)

X1+i = L sinh ρΩi , i = 1, . . . , 4 , (5)

where Ωi parameterize three dimensional sphere of unit radius:

4∑
i=1

Ωi = 1 . (6)

We then find the metric on AdS5 to be

ds2
AdS5

= L2
(
− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2

3

)
(7)

where dΩ2
3 is the line element on the unit three-sphere.

Exercise: Show that the above metric for AdS5 solves Einstein’s equation with a cosmolog-
ical constant

SR,Λ =
1

2κ2
5

∫
d5x
√
−g
(
R− Λ

)
(8)

and relate the cosmological constant to the radius L of AdS5.

It is instructive to understand better the geometry and topology of AdS5. The co-ordinate
τ is timelike and has period 2π which is essentially the defining feature of closed timelike
curves. These are eliminated by working on the universal covering space2. Further, we see
that as ρ→ ±∞ the radius of the τ -circle grows without bound while at ρ = 1 is has radius
R. As such we can visualize AdS5 as a doubly-trumpeted cylinder with an S3 at each point.
This S3 smoothly shrinks to zero size at ρ = 1.

The metric (7) preserves all the symmetries of the hyperboloid equation (1) namely

G = SO(4, 2) , (9)

in fact AdS5 is a coset space

AdS5 =
SO(4, 2)

SO(4, 1)
. (10)

As a quick check we see that dimSO(4, 2) = 15 and dimSO(4, 1) = 10.

1.2 The Boundary of AdS Space

Perhaps the most crucial aspect of gauge/gravity duality is that the space-time on which
the gravity theory lives has a non-trivial boundary on which the QFT is defined. As such,

2The universal covering space of a manifold M is obtained by chosing an arbitrary basepoint x0 and
considering the space of all paths in M originating at x0, up to continuous deformations.
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it behooves us to understand the boundary of AdS space in some detail. Roughly speak-
ing, the boundary of AdS5 is R1,3 but one must be a bit more careful and this requires us
understanding how to compactify a non-compact manifold.

Perhaps counterintuitively, one compactifies a space by adding points, not subtracting
points. For example, one can compactify flat Euclidean Rn to Sn by adding the point at
infinity. However the compactification of R1,p which we will use is a bit more subtle than
this.

First we take a small detour, we consider the space of null rays in R2,p. Denote the flat
signature (2, p) metric by ηab then null rays are of course the space of lines which satisfy

ηabX
aXb = 0. (11)

This quadric has a canonical action of SO(2, p) (the Lorentz group of R2,p) on it, as well
as an action of R+ by common rescaling Xa → λXa. We can parameterize this space by
Xµ ∈ R1,p

R̃1,p = (
1

2
(1 +X2), Xµ,

1

2
(1−X2)) , (12)

where the tilde represents that in fact this is a compactification of R1,p.
Now we show that this space just described is the boundary of AdSp+2. We start with

the definition of AdSp+2

ηabX
aXb = L2 (13)

then under Xa = λX̃a we get the same AdS space in new coordinates

ηabX̃
aX̃b =

L2

λ2
. (14)

Now to describe the boundary we take the limit λ→∞ and mod out by constant rescalings:

R̃1,p =
{X̃a | ηabX̃aX̃b = 0}
{X̃a ∼ cX̃a}

. (15)

Now the punchline which really gives the game away will have to wait until next lectures
when we learn about conformal transformations but perhaps some people have been studying
independantly ;)...The Lorentz group of R2,p is the conformal group of metrics on R1,p. This
group acts in a canonical way on all interior point of AdSp since it preserves the quadratic
form ηabX

aXb but it acts on the boundary of AdS in a pretty non-trivial way. In terms of
Xµ in (12) it acts as conformal transformations.

1.3 The Poincaré Patch

We can solve (1) in a quite different manner:

X0 =
1

2u

(
1 + u2(L2 + ~x2 − t2)

)
, (16)

X1 = Lut , (17)

X1+i = Luxi , i = 1, 2, 3 , (18)

X5 =
1

2u

(
1 + u2(L2 − ~x2 + t2)

)
. (19)
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This coordinate system does not cover all of AdS space, it is known as the Poincaré patch.
That is not a problem. The metric in these co-ordinates is

ds2 = L2
(du2

u2
+ u2(−dt2 + d~x2)

)
(20)

One can see from (7) and (20) we see that in global AdS, τ is a global time coordinate
whereas in the Poincaré patch, there is a horizon at u = 0 where the time coordinate t
becomes null.

Another feature of the Poincaré patch is that the full symmetry group is not manifest
since some generators would take a point on the manifold outside the patch. What is manifest
is just

GPoincare = SO(1, 3)× R4 × SO(1, 1) (21)

where the SO(1, 1) factor is dilatations

(t, ~x, u)→ (λt, λ~x, λ−1u) . (22)

2 Scalar Fields in Anti-de Sitter Space

The gauge gravity duality relates fluctuations in the bulk to the physics of the boundary
QFT so it is of primary interest to understand exactly how fields propagate in the bulk.

We will work in Euclidean AdS

Consider a massive scalar field with action

S = −1

2

∫
dd+1x

√
g
(
∇µφ∇µφ+m2φ2

)
(23)

with equation of motion
�φ = m2φ. (24)

Recalling the formula

�φ =
1
√
g
∂µ
(√

ggµν∂νφ
)

(25)

and using the metric

ds2
AdSd+1

=
1

z2

(
ds2

d + dz2
)

(26)

with the ansatz
φ = eik·xz(d−1)/2ψ(z) (27)

one can show that (24) becomes

ψ′′(z) +
(−m2 + (1− d2)/4

z2

)
ψ(z)− k2ψ = 0 . (28)

We are interested in zero momentum solutions which are given in terms of Bessel functions

ψ(z) = z1/2
[
c1Iλ(|k|z) + c2Kλ(|k|z)

]
(29)
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with

λ =

√
m2 +

d2

4
. (30)

We would like to allow such solutions when the energy is positive and disallow them
otherwise. Due to the curvature of AdS space the potential is singular in this Schrodinger
equation (28) and the issue of positivity of the energy is a moderately subtle affair. The key
issue is the boundary condition at z = 0, one must enforce that no energy leaks out of AdS
space. The final analysis is that mildly negative mass states are allowed

m2 ≥ −d
2

4
. (31)

This fundamental result is known as the Breitenlohner-Freedman bound [5]

2.1 Geodesics
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