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1 Foundations



1.1 What is quantum chromodynamics?

Quantum chromodynamics (QCD) is the fundamen-
tal theory underlying the strong nuclear force — a
gauge theory describing the interactions of quarks
and gluons.

 Nuclear physics was born with the discovery of the atomic nu-
cleus by Rutherford in 1911.

+ Subsequently, Chadwick discoverd the neutron in 1932 — similar
in mass to a proton, but electrically neutral.

« 2 basic building blocks to build up the chart of nuclides: protons
& neutrons, or collectively “nucleons”.

Wikipedia



+ The forces that bind nuclei must be strong:
— Nuclei are compact.

— Binding must be sufficient to overcome Coulomb repulsion be-
tween protons.

+ Yukawa (1935) proposed a (spinless) meson as a potential force
carrier with mass scale:

1
Mpion = 200 melectron [2 E mproton:| .

The mass scale was predicted on the basis of the size of nuclei,

where massive particle exchange gives rise to potential energy: The class of particles that participate in the strong inter-
action are collectively referred to as “hadrons”. Our
—mr simplest (empirical) examples are the proton, neutron
(& « o 19 and pion... we’ll get to talking about a range of other
V(T) XX s Yukawa potentlal . states soon.
T




« We all know the ultimate solution to this puzzle: a gauge field
theory describing coloured quarks.
The building blocks of QCD:
— A set of different quark flavours: “up”, “down”, “strange”...
Each quark field carries 3 colour charges

— Interactions of the theory are constructed by demanding a (lo-
cal) gauge symmetry in this colour degree of freedom.

— Inanalogy with the photon of QED, we must have gauge bosons

that communicate the colour force: gluons. As we will see, gluons themselves carry colour charge
and are therefore are able to directly interact with them-
selves — a key feature that distinguishes a non-Abelian
gauge theory from QED.




« Hadrons are emergent phenomena:

Proton Neutron Pion
my >~ 938 MeV my ~ 939 MeV my ~ 140 MeV

and a host of other states that we’ll come back to...

« Itis worth noting that, in the early days, there was a tremendous
conceptual challenge to consider the construction of a Lagrangian-
based theory that does not contain the observed states.

So how did we get over this conceptual challenge?



1.2 How come QCD?

Here we wish to highlight three key features supported the estab-
lishment of QCD: confinement, asymptotic freedom and evidence

for the gluon.

The discovery of the charm quark helped to both es-
tablish the quark model, and gave support for there
being three colours of quarks.

+ The production of hadrons in electron—positron annihilation gives
a I‘elatively Clean pI‘Oduction pl"OCGSS. One can also produce hadrons in hadron—hadron col-
lisions, but of course we need then to understand the

complexities of both the initial and final states of the
process.




« First, let’s consider the simpler process of muon production at
lowest order in QED

I ;ﬁ

In the relativistic limit, this cross section is given by: ‘There’s nothing too special about the relativistic limit, |
but it makes the expressions simpler, where for
4 2 2 Ecwm > 2m, the mass terms become negligible.
olete” = putp™) = e itha = —
pwrpT) = 5—, witha=_—. (1.1)
3 By A

Note of course that o is frame independent, and we
could of course replace EéM with the total invariant

« Now suppose that we have electromagnetically-charged quarks. | mass(squared)ofthe et e (orut ™) pair, e sor
We'll ignore any possible interactions between the quarks, and
just assume that ultimately they will turn into hadrons.

7
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+ The calculation takes the same for as the muon case, with the ygq

vertex modified to include the quark charge factor. For example, (he charge of an up quark is 2/3 of that carried by

a positron. For notation, let’s denote the electromag-

the prOduction rate of red-antired up quarks will be given by. netic coupling by Q and the fractional charge by Q,
ie.Qu = Que = fe.
T _ 41 (2\? a?
oleTe” = uty) = — (5| =5 (1.2)
3 \3) B2,

« For the total cross section, we sum over all posssible final states.
— If the u quark has N, possible colours, then we sum over all of

them such that:

4 9 2 2
olete” = um) = ?ﬂ (3) NCEOéM. (1.3)
— Finally, we assume that the wu pair will ultimately produce
hadrons, and hence the total rate for producing hadrons is
given by summing over all possible quark flavours (with charge
factors):

042

4
o(ete” — hadrons) = ?ﬂ > 9% Nc%. (1.4)
f
+ Most importantly, if we consider the ratio of hadron production

relative to muon production, we have a very simple prediction in

terms of quarks: Of course this simple prediction should only be valid

in the region where Ecm > 2my, for the heaviest
0_( €+ e~ — hadronS) 9 flavour of quark (f) that is energetically available.
R= e~ Ve 9 (1.5)
olete” = ptp) 7

9



» To make this concrete, let’s first consider Ecy > 2 GeV > 2my,
but below the threshold for charm production:

o(ete” — hadrons)
olete” = ptp)

@] e

And, if we go well above charm quark production, we expect this
ratio to change to:

R=

o(ete” — hadrons) 10

== == 7N. .
R olete” = utpu™) 9 ¢ (7)

10

We've not yet talked about the scale of quark masses,
but let’s take it that the up, down and strange quark
masses are much less that 1 GeV.

Here we’re assuming we know that the charge of the
charm quarkis Q. = +%.




» Here we take a look at the situation compiled by the Particle Data
Group in 1977 (a supplement to the 1976 edition):

ol | |ycess
0 - JAP(3100) 4
gl |
6: l i : l B
R Lo | - ‘ M{MIHUMMHH{WHWIH ]
4 ; - 4 I —
i ; {4 lﬁw}mum ' ]
2 - a“i{ w\ /‘W‘ ]
0 . AN | 1 | | | j
) | 2 3 4 5 [S) I 8
Ec.m. (GeV) XBL774-702

Considering our rather simplified assumptions, the agreement is
incredible!

11



+ In addition to predicting the overall rates of hadron production,

the other key feature of this figure shows the distinct line features

of the J/4(3100) and ¢(3685).

— Ifthe ete™ energies are tuned to just the right value, there is
a massive increase in the observed cross section.

— And simply from the Heisenberg uncertainty principle, these
very narrow widths correspond to very long-lived states.

These must correspond to bound states of some new type of quark:

the charm quark.

« As above, we noted that we had a conceptual challenge in the es-
tablishment of QCD, where the quark fields of the Lagrangian do
not appear as observed particle states.

If QCD is to be the correct theory of the strong inter-
action, it must generate a mechanism for quark con-
finement.

Fortunately, since the charm quarks are relatively heavy com-
pared to the QCD scale, we can approximate the c¢ interaction
in terms of a potential model.

12

The lifetimes of the J/+) and + are O(1,000) times
longer than typical gq hadronic states. To quote David
Griffiths from his book: “It’s as though someone came
upon an isolated village in Peru or Caucasus where
people lived to be 70,000 years old. That wouldn’t be
some actuarial anomaly, it would be a sign of funda-
mentally new biology at work.”

The treatment of charm quarks in a non-relativistic con-
fining potential was essential for establishing QCD as
the fundamental theory, however resolving the nature
of confinement for light quark systems remains an ac-
tive area of research.



https://www.wiley.com/en-us/Introduction+to+Elementary+Particles%2C+2nd%2C+Revised+Edition-p-9783527406012

Although quarks appear to be confined, their interactions appear
to be rather weak at high energies.

The vanishing of the strong coupling constant at
(asymptotically) large energies is referred to as
asymptotic freedom.

« Tomorrow we will explore the running of the coupling in more
detail.

+ Here we will highlight the scaling phenomena observed in deep-
inelastic scattering:
— In electron—proton scattering at high energies, the proton can
be modelled by a distribution of weakly-interacting quarks.
The deviations from non-interacting are given precisely by
the predications of QCD.

13



Elastic scattering

electron K

_
——— ‘\p/\*ﬁ

proton

« If we measure the electron scattering angle and final energy, we
specify the momentum transfer ¢ completely.

« In the elastic case, the final state is a proton, and hence we have

PrP=p=ml=0p+q9’=p"+F+2p q,

and hence we only have a single independent scattering parame-
ter:

Q*=—=2pq (1.8)

14



Inelastic scattering

!
electron k

proton

« In the inelastic case, we break the proton apart:

(p+Q) (mp+mw)2~

« In general, we require two Lorentz scalars to specify scattering,
e.g.:

W? = (p+q)?, total invariant mass of final-state hadron,
(1.9)

Q* = —¢*>, momentum transfer. (1.10)

15



Parton model
« If we go to large Q?, we probe the short-distance features of the

target.
 Consider amodel where a fast-moving proton is a beam of weakly-
interacting partons (quarks or gluonS) We consider that we a have a distribution of partons,
each carrying a fraction of the momentum of the total
:7 momentum of the proton.
\\3
P — 00
Lorentz contracted
» Suppose we scatter elastically from a single quark: In this simplified model, we see that the observed scat-

tering at a particular z = 2”—'3 , directly identifies the
—q

(xp)Q = (;ij —+ q)2 = (;I;p)2 -+ 2p - q —+ q2 = (0= pr -q + q2. momentum fraction carried by the struck quark. And

hence the rate of scattering encodes the probability of
finding a quark with that «

« In this model the scattering should be specified in terms of the
single variable, z: “Bjorken scaling”.

16
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« Bjorken scaling: cross section, at any z, should be independent
of Q2.

« In reality, the observed evolution is weakly dependent on log Q2.
And QCD predicts this dependence with great accuracy!

17



If we are to describe the interactions between quarks
by a gauge theory, we should expect to see evidence
for the presence of the gauge bosons: the gluons.

A QED prototype: ee — eey

« In QED, we can produce photons in electron-positron collisions:
ee — eevy

_ A

e

e et
« We radiate a photon in the collision: “Bremsstrahlung”.

18



Radiating a gluon
« If we have a gauge theory with gluons as the analog of the photon,
we should similarly anticipate the process ete™ — ¢qg:

¢ 39

e et

« But we have confinement: quarks and gluons must strip (soft)
particles from the vacuum to form colour singlet states.

» However, if each of the ¢gg are hard (i.e. high-energy) we should
observe collimated jets of colour-singlet hadrons — 3-jet events!

19

By momentum conservation, the 3 jets must lie in a
plane, and it will be most easily to identify the signa-
ture if each has similar energy and hence they are each
separated by 120°.




First observation of 3-jets
« First observation of a 3-jet event was reported at the 1979 Lepton-
Photon Conference (Fermi National Accelerator Laboratory).

lotrccks__.--"""“ 5 tracks
4.1 GeV' 4.3 GeV

4 trcc'ks':
7.8 Gev
U TAssO

29304

 Prediction for rate can be made from QCD: another success!

20



1.3 Why were we led to the theory of QCD?

The theory of QCD wasn’t created in a vacuum. As ex-
periments probed the high-energy (or short distance)
features of hadronic systems, there was a search to de-
velop a consistent theory that could describe a range
of puzzling phenomena.

« For context, let’s remind ourselves of a brief history of the evolu-

tion of particle physics in the lead up to the pre-QCD era: The full progression is of particle physics is of course
much richer than summarised here. And we just want to
. highlight key features that a relevent to understanding

1932 The neutron was discovered. the strong nuclear force.

21



1935—1947 Yukawa proposes pion as carrier of strong force. Even-
tually disentangled from the similar-in-mass muon.

PROCESSES INVOLVING CHARGED No. 4047 May 24, 1947 NATURE 695
MESONS i = = ; ;

By Da. C. M. G. LATTES, H. MUIRHEAD,
Dr. G. P. S. OCCHIALINI and
Dr. C. F. POWELL
H. H. Wills Physical Laboratory, University of Bristol

N recent i igati with the
method!?, it has been shown that slow charge

particles of small mass, present as a component of
the cosmic radiation at high altitudes, can enter
nuclei and produce disintegrations with the emission
of heavy particles. It is convenient to apply the
term ‘meson’ to any particle with a mass intermediate
between that of a proton and an electron. In continu-
ing our experiments we have found evidence of mesons
which, at the end of their range, produce secondary
mesons. We have also observed transmutations in
which slow mesons are efjec;ed from dim'nt.eg's_,ti.l:g e }
nuclei. Several features of these processes remain to . 1. " ;
o chucidated, bt wo prosont tho following aooount SR s Shiis Bhbes A S e L SR e, B SN v BT B RN
of the experiments because ﬁhelflesﬂlisfﬂgpe&{ to bear THE PHOTOGEAPHS ARE COMPLETELY UNRETOUCHED
closely on the important problem of developing a
mtisfg,otory mesunpzheory of nuclear forces. _

OBSERVATION BY MRS, I. ROBERTS. PHOTOMICROGRAPH WITH COOKE X 45 ‘FLUORITE' OBJECTIVE. ILFORD ‘NUCLEAR RESEARCH',

“...we have found evidence of mesons which, at the end of
their range, produce secondary mesons.”

And if physics were governed by neat clean principles, we
would have been done! Atoms are held together by the Coulomb
field, and the compact nuclei of protons and neutrons are
held together by the pion field (and neutrinos resolved en-
ergy and angular momentum conservation in weak decays).
But...

22



1947-1950 The first “strange” meson was found (1947). Cos-
mic rays strike a lead plate: downstream a pair of charged
pions are observed:

0 —_
KY - ntn, (1.11)

and Shorﬂy after (1949)7 another type charged particle 1S [ These weren't immediately named kaons, and not was
it obvious how similar the K© and KT are — but it

observed to decay to 3 charged pions: makes our story easier.

Kt Ssatata. (1.12)

these are clearly heavier than 2 and 3 pions — but still rela-

tively llght “Mesons” were initially identified by being intermedi-
ate in mass, i.e. between an electron and the proton;

And by 1950, anOtheI' Strange track was seen — SOmething whereas “baryons” were heavy, at least as heavy as the

neutral decays to a proton and pion: e
Apta, (1.13)

but this time it must be heavier than m, + m.

1952 Brookhaven Cosmotron began operation, and so began an
era of discovering all types of new states.

A feature of these new states is that they are produced
rapidly, ~ 10723 seconds; yet decay slowly, ~ 10710
seconds: there must be different underlying mecha-
nisms at work!

23



1961—1964 The Eightfold Way

1232MeV

1385MeV

1530MeV

1672MeV

Gell-Mann and Ne’eman (independently) identify a classi-
fication scheme for the various new states that were being
found: and importantly provide a prediction for the 2~ baryon.

24



1964 Quarks are proposed as the underlying building blocks that
underlie the patterns seen in the eightfold way.

Quarks Anti-quarks

S

— Quark model: All mesons can be identified as ¢q states,
and all baryons are ¢qq.

25



1964 Within the quark model, single-flavour states such as the
0~ (sss) or AT+ (uuu) appear to be at odds with the Pauli
exclusion principle. Greenberg proposes a new quantum
number, such that each quark one of a triplet of possible
states: 3 colours. ((Gell-Mann introduced the term “colour” in the 1970s. |

1962—-1964 Gell-Mann (again) identifies current algebra in sym-
metries of the strong interaction: Symmetries in the vector
and axial-vector flavour currents in QCD. Importanly, sym-
metries are broken, but weakly.

1973 A lot happened:
— The charm discovery,

— Promoting the colour quantum number to a gauge sym-
metry,

— Non-Abelian gauge theories provide candidate for asymptotically-
free theory.

26



2 QCD formalism

27



2.1 Non-Abelian gauge theory

« From a theoretical point of view, the construction of QCD ap-
pears as a very natural extension of the gauge symmetry princi-
ple, that has proven so successful for quantum electrodynamics
(QED).

« To recap the Abelian case, quantum electrodynamics is based on
the invariance of the theory to local U(1) transformations:

(@) = ¢/ (2) = (), (2.
Au(x) = Al (z) = Ay — Ouw(z), (2.2)

where ¢ is a fermion field (typically the electron) and A, is the
corresponding gauge potential, which gives rise to photon exci-
tations.

Importantly, we note that the phase rotation, w(x), is dependent
on spacetime.

28

GWS theory unifies QED with the electroweak force,
with the gauge bosons arising from a non-Abelian SU(2)
group. Gauge theories don’t immediately permit mas-
sive gauge bosons, and the Higgs mechanism proved
successful in overcoming this.




« It can be shown that the following Lagrangian under this gauge

transformation:
1 — .
L= _ZFWFW + 9 (v 0, — ey Ay —m) 1Y,
with
FHY = gFAY — 9Y AH.

29

(2.3)

(2.4)

If you've not seen this before, it’s worth convincing
yourself that this Lagrangian is invariant under the
transformation specified above. We find that the par-
tial deriviative in the fermion Lagrangian acts on the
phase rotation, and the transformation of A, exactly
compensates the extra term. And note that it is straght-
forward to show that F is invariant under this transfor-
mation.

For notation, we’ll make use of the covariant derivative,
here written as

Dy = 0y +ieAy,

and Feynman’s slash notation, e.g. P = v* D,,.




« Extending the gauge principle a non-Abelian group, we first state [ 1n the current understanding of the Standard Model,
. there are 6 known flavours of quarks, hence the sum

that the QCD Lagrangian can be expressed compactly by: over f runs over u, d, s, c, b, t. In practice, if one

is only considering low energies, one only needs to

consider the (energetically) active flavours, where the

4 nv modified coupling for consistency).

1 _
E — —*Fa FCL 1224 + Z Q,Z)f (/Lw _ mf) ¢f’ (2.5) heavy flavours can be integrated out (resulting in a
f

with an implicit sum a = 1, ..., 8 running over the independent
gauge field components, Af, where we have one for each genera-
tor of the symmetry group. We will often write the gauge field in
a more compact notation:

8
A=Y At (2.6)
a=1

noting that A encodes 4 matrices in colour space — one 3 x 3
matrix for each spacetime direction.

« The form of the covariant derivative looks similar to that of the
Abelian case:

D, =0, —igA,, (2.7)

but we now identify A, as a matrix in colour space, and the ordi-
nary derivative is diagonal in colour, hence this term is implied
to be propotional to an identity matrix.

30



In the above Lagrangian, we’ve started with the final answer, but
where is the gauge invariance that we desired?

Firstly, the gauge symmetry that we desired is that we can rotate

the colour components (for any quark flavour) into each other

without changing the physics:
by(z) = (@) = Qa)y(z),

where () is a spacetime-dependent element of the SU(3) group,
which we can write as:

Q(z) = " (@ (2.9)

being parameterised by 8 rotation angles w”(z) — one for each
generator.

(2.8)

31

~
We can picture 1) # as a 3-component column vector
and Q as a 3 X 3 matrix. In terms of colour compo-
nents, i, j, = 1, 2, 3, we can write the transformation
in index notation:

vy = W) =Yy}

J

The SU(3) generators are commonly represented by the
Gell-Mann matrices, up to a factor of 2 in the normali-

ksation, t?\r = \%/2.

J




+ An easy way to demonstrate the gauge symmetry of the fermionic
part of the action is to rewrite the Lagrangian in terms of the
transformed ﬁelds: [For unitary symmetries of interest to us, of course we]

£ =B —myw = FAQP — m)Qf O, (2.10) -

Y (iD'—m) P

which clearly represents the symmetry of the theory, provided
that we identify the tranformation of the covariant derivative:

D), = Q(z)D, Q' (z). (2.11)

» Given the transformation law for D, we can determine the trans-
formation of the gauge potential:

Al = 04,00 + ga(aum ). (2.12)

32



« We have constructed the formulation of a (locally) gauge invari-
ant action for our “matter” fields. Just as in the Abelian case, we
require a description of the kinetic energy in the gauge fields.

« It turns out that we can define the non-Abelian field strength ten-
sor in terms of the commutator of covariant derivatives: [It’s important to note that the commutator is not a dif—]

ferential operator — it’s simply a function that takes a
value in the Lie algebra of our symmetry group.

Fu = —[Dy, D). (2.13)

)
g
» Given the form of the commutator, it is evident that the field

strength tensor is an element of the Lie algebra, and can hence

be eXpressed as: Just as for A, F' can be expressed independently of the

representation.
Fu = FﬁyT“. (2.14)

We can determine the components of F' by writing out explicitly
in terms of the gauge potential:

Fu = (auAu - 81/14;1) - ig[Aua Au], (2.15)
= 0, AYT* — 9, A4T* — igA% AD[T* T, (2.16)

— (auAg ~9,A% + g f“bCAZAi) T, (2.17)

Pl = 0,A% — 0, A% + g f AL AL (2.18)

In the absence of the non-Abelian commutators, you
should recognise the usual field strength tensor of QED.

33



« We could construct the transformation law for F' using A, how-
ever it is easier to use the commutator form and the covariant
derivative transformation (D’ = QDQY), giving:

Fu(xz) — F;W(x) = Q(m)FW(:E)QT(x) (2.19)

« We note that unlike the Abelian F),,, the non-Abelian case is not
itself invariant under gauge transformations. Of course to con-
struct a gauge invariant action, we need to form products that
transform invariantly under the gauge symmetry.

34
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We see that the field strength exhibits a homogeneous
transformation law, in constrast to the gauge potential

(see Eq. (B13)).

In the non-Abelian case, F' will not generally commute
with €, hence giving rise to a non-trivial transforma-
tion law. Physically, we note that at weak coupling
(where we neglect the commutator), F will look like
electromagetic E and B fields, but having independent
components for each of the generators of the group.
Since these E and B fields are charged under the gauge
group, it is not surprising that they will rotate into one

another under a gauge tranformation.




 The simplest possible Lagrangian we can construct is built from
F?, where the Lorentz indicies are contracted to form a Lorentz
scalar, and we take a trace over colour to ensure gauge invari-

ance: The conventional factor of — % here is simply chosen
to ensure the canonical normalisation in terms of the
connection to the Hamiltonian.

1
»Cgauge = _5 Tr (F;,LVFHU) . (2.20)

 To confirm that this is gauge invariant, we insert the transforma-
tion law for F:

1

Loauge = -3 Tr (F;VF’“”> , (2.21)
1

=T (2B QPO = Lyange, (2.22)

where the equality easily drops out by the cyclic property of the
trace.

35



« Finally, to write out in terms of components we use the normali-
sation of the group generators:

1
Lgange = ) Tr (Fﬁu ty wat?\/) ; (2.23)
1 1
= F, Py (tath) = —E (2.24)
—_——
l ab
26

which agrees with the form we originally introduced in Eq. (2.5).

36



« To make the Lagrangian more explicit, as an example we write
out the up quark Lagrangian in detail:

D (19 — mau) 8y + g A (t%) i3] s (2.25)
with 7, j = 1,2, 3 running over the colour indices and ¢ the gen-
erators of the (3-dim’l) fundamental representation of SU(3).

+ And writing out the gauge part explicitly, we have:

1 a a pv a a aoc av c
—F F = =1 (0,47 = 0,47)° —g " (0" A"") A} A7

1
4
kinetic energy 3-gluon vertex
1
_ ZngabCfade AbMACUAZAi i (2.26)
—_—
4-gluon vertex

37



2.2 Gauge fixing

 In order to construct the Feynman rules of the theory, it is es-
sential to specify a gauge-fixing condition. Just as for the photon
in QED, the gluon matrix is highly singular — and hence we are
unable to invert to define the propagator. This is a consequence
of an unphysical degeneracy associated with the gauge degree of
freedom.

« Therefore to define the propagator we prescribe a gauge fixing
condition. Choosing a (generalised) Lorenz gauge-fixing condi-
tion, 9 - A = 0, gives rise to the {-dependence of the gluon prop-
agator (see Lect 3 below). This works just the same as for QED.

« In QED, we supplement this gauge-fixed propagator by the con-
dition that only the physical degrees of freedom propagate in ex-
ternal (in/out) states — photons are transverse, i.e. real photons
Only have two thSical pOlaI‘isationS. [To somewhat oversimplify the issue, A, has 4 degress]
. of freedom, but photons only have 2.
— Internal photon lines sum over all components of the gauge
potential, yet it turns out that the unphsical degrees of free-
dom never contribute to closed loops.

38



« However, the story is a little more complicated in QCD. In this
case, additional interaction vertices make it possible for the un-
physical degrees of freedom to contribute to loop effects.

— As it turns out, there is a prescription that we can implement
that exactly cancels the unphysical effects in gluon loop graphs;
this is known as the Faddeev-Popov procedure.

— The consequence of this is to introduce unphysical “ghost” fields

having the properties that they are scalar, Grassmann-valued
(anti-commuting) fields charged under the adjoint represen-

tatlon. It may seem odd to see anti-commuting scalars, since
this doesn’t match with the statistics of any particles we
know of — the ghost fields are purely a mathemetical
trick to patch up something unphysical in our treatment
of gluons.

39



Let’s quick recap the issue in QED.

We consider just the gauge/photon part of the QED action, where
we want to do path integrals of the form:

/ DA DA=DADADA?DA®. (2.27)

To highlight the problem, we transform the action to momentum
space:

=5 / oyt ) [~R2g" + k] Au(—k). (2.28)

From the point of view of the path integral, where we wish to
integrate over DA, we have a nice simple quadratic form, which
should be easy to compute as a Gaussian integral.

However, we easily identify that this matrix is singular: the ac-

tion will vanish whenever A,,(k) = k,&(k), for any .

— With the action vanishing, the integrand of the functional in-
tegral is unity over a huge volume of gauge space and hence
badly divergent.

40

|

Sorry, I'm talking about path integrals before remind-
ing us all what path integrals are. Hopefully we have
some familiarity with these by now.

|




« This divergence is a consequence of gauge invariance — we are
integrating over a space of physically-equivalent field configura-
tions.

+ In the functional integral, we should really consider that we only
want to integrate over the physical Hilbert space — any states that
are equivalent by a gauge transformation are not independent
(and hence shouldn’t be double counted).

By exploiting the gauge symmetry of the theory, we can choose
to fix the gauge and hence eliminate the unphysical degrees of
freedom.

— There are many gauge fixing conditions on the market, and
each have their advantages depenging on the situation in which
they are being used. One common choice is the Lorenz gauge:

oA, =0, (2.29)

which has the attractive feature that it transforms invariantly
under Lorentz transformations.
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— Whatever our choice of gauge fixing prescription, it can be
helpful to consider a pictorial representation:

gauge transformation gauge-fixed solution

Ao
A, /
Gauge “orbits™: T >

regions of constant physics

A, SPACE

Gauge-fixing condition: subspace interacting all orbits

Each contour depicts a space of gauge-equivalent configura-
tions.

— A suitable gauge fixing condition should have a unique solu-

tion for every gauge configuration.
« While straightforward classically, imposing a condition (such as

Note that Lorenz gauge alone doesn’t entirely specify
the gauge, and we typically eliminate the final gauge de-
gree of freedom by placing a restriction on the photon
polorisation vector.

the Lorenz gauge) on quantum field operators is challenging.
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The somewhat ad hoc prescription that we generally all learn first
is to add a term to the photon action that explicitly breaks the
gauge degeneracy:
1 L1

St on — /d4x [—4FWF“ — 2—5(6 : A)2] . (2.30)
Importantly, this breaks the singular nature of the photon ma-
trix, and allows us to invert and hence define the propagator (=
Green’s function):

Ay (F)

2 k kl/
T2 i {—guv +(1-¢) /]:2 } ; (2.31)

... and then we all run away setting ¢ = 1 and forget we ever
went through this story.
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Within the path integral formalism, there exists a neat mathe-
matical trick that introduces the gauge-fixing term in the action
in a more systematic way — and importantly, gives us a strategy
that can more readily be extended to non-Abelian theories.

The basic idea is that we would like a strategy that would allow
us to factorise the functional integral into:

/ “gauge transforms” x / “distinct gauge orbits”.

For the sake of our argument, let’s assume that we would like to
impose something like the Lorenz gauge-fixing condition: 9- A =
0.

In general, we choose an arbitrary function that we wish to con-

strain, e.g. G(A) = 0, and set:
G(A) = 9,A" — K(x), (2.32)

with K being just another arbitrary function that we can’t (yet)
attach any meaning to.

To force G to be zero, we can introduce a convenient functional
delta function:

1= / DG S[G(A)). (2.33)
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The bar A indicates that we have selected a gauge con-
figuration that satisfies the Lorenz condition,

ie. AM = AM 4 9Mw,

where w is appropriate chosen for any arbitrary A.




« We see that G depends on the gauge transformation:

G(A) = 9,A"(z) + O*w(z) — K(x), (2.34)
and we perform a change of variables, G — w:
1= /DG(S /D det [5(;5;4)] 5[0 A—K]. (2.35)

« We've just created a highly-convoluted way of writing the iden-
tity, but let’s insert this in our original functional integral:

/ DADw det l‘sig‘l)] 5[0 A — K]l (2.36)

» The Jacobian is independent of A (in Abelian theory) and can be
factored out of the A integral.
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+ Now we can do a shift of the integration variable A — A, with
DA = DA and using the gauge invariance of the action, we have:

/ DA S = / Dw det l‘SG&(A)] / DA 5[0, A" — K]S,
w

factorised!

(2.37)

and now A is just a dummy variable and we’re free to change it
back to the label A if we wish. Note that we modified K — K’
in this transformation, but K was arbitrary, so it’s just become a
new arbitrary function which we’ll just go back to using K.

» The Dw integral will be some factor, but is independent of A and
hence just a constant that will fall out in the normalised ratio,
Z[J]/ Z[0].

« We have now a delta function that restricts 0 - A to the arbitrary

function K we introduced earlier.
— Since K is arbitrary, we can just average over it with a Gaus-

sian:

/DAe"SW = NE/DK exp{—i/d4mK;éw)}

X /Dw det {562;5:4)] /DA(S[@MA" — K]S,
(2.38)

46

As above, the overall normalisation of the functional
integrals is irrelevant, however, we’ve kept a factor of
N¢ just as a normalisation of the Gaussian integral that
we've introduced.




— Finally, the ¢ function allows us to eliminate the K integral
and we have:

/DA Sl = Ng/Dw det {5(;(‘4)}
w

A2
X /DAeiS[A] exp{i/d4x (82? )} (2.39)
Phew!

« Look at that! We've factored our path integral into some irrele-
vant constants corresponding to integration over gauge degrees
of freedom, and an integral over D A that has precisely the ad hoc
gauge-fixing term that we had introduced earlier.
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» The extension to the non-Abelian case, e.g. QCD, carries through
in much the same way as the calculation above. The distinction
however is that the gauge transformation is no longer indepen-
dent of the gauge potential.

« By expanding the gauge transformation defined above (p.1d), an
infinitessimal gauge transformation can be expressed as:

- 1
A% = A, + ;Dzbwb. (2.40)

 The argument of the Faddeev-Popov determinant is no longer in-
dependent of A. Explicitly, we have:
)
dwb(y)

« We can represent this functional determinant as a Grassmann
Gaussian integral:

det [5(;(/1)] :/DEDC exp {i/d4x6(—8.D)c}, (2.42)

(0 A9(z)) = ;a D@ (g — ). (2.41)

ow

where we have introduced the Grassmann variables c¢, ghost
fields, to define the functional determinant. Importantly, the op-
erator J - D lives has adjoint indices and hence the ¢’s live in the
adjoint space — i.e. we have one ghost field for each type of gluon.
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We've been explicit here to indicate that the covariant
derivative is acting in the adjoint representation.

If you've seen Grassmann integration before, we remind
ourselves that the mutli-dimensional complex Gaussian
can be expressed as:

/d@*d@e*"*f“’ — det A.

For the ghost fields, we conventionally use ¢ for the

complex conjugate.
\




« As mentioned earlier, we therefore recognise the ghost fields as
Lorentz scalars, but are anticommuting and hence obey Fermi
statistics.

« While the determinant factor must be treated explicitly, it doesn’t
depend on w and hence the integration over w still factorises as

an OVeraH constant. There’s a subtlety here, w only factorised because we
considered a perturbatively small gauge transforma-

+ We summarise this by noting that we work with a modified ac- | tion where the gauge transformation, Eq. (B.4d), s in-

ear in w. This will be fine if the gauge fields are small,

tion, that both includes the 1/(2¢) term and a new contribution | ie in perturbation theory. Going beyond perturbation
theory brings us back to the questioning the legitimacy

from the ghost fields — and the path integral is extended to in- | ofEa @23 —butthatfeelslikea storyfor another day.

clude integration over these Grassmann fields.
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3 Running coupling

50



3.1 Feynman rules

Without derivation, we simply state the Feynman rules of pertur-
bative QCD:
* Gluon propagator

b _Qg];u ap = p;djbig —g" 4+ (1 —£)p;§V . (3.1)
 Quark propagator
- 103 (B + My )as
Y L e (3-2)
+ Ghost propagator
[ }: ..... a = p;i“bw (3.3)
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Just as a reminder on the conventions here: the Greek
letters p, v, . . . denote Lorentz components; whereas
«, B, ... are understood as Dirac indices. The colour
components 4, j, . . . represent components of the fun-
damental (running over 1, 2, 3); and a, b, . . . denote
components of the adjoint representation (1, . . ., 8).




. Quark—gluon vertex [While not derived explicitly, you can see these terms in]

the interactions described above.

.t
a, W B ta’ — ig~H ﬁ
= 19%apti; = 19%as - (3-4)

B,J

e Triple-gluon vertex

a, p
L
ks = gf" (9" (k1 — k)’ + " (k2 — k)" + g™ (k3 — k1)"],
el
X ¢p
b,v ks

= gfabcrgiiyp(kl7k27k3)' (3'5)

For convenience, we've itroduced the vertex function
Fg 3 to collect the Lorentz structure of the 3-gluon ver-
tex.
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 Four-gluon vertex

a, p d, g
_Z'g2 [fabefcde (gupgua _ guagup)
— +facefbde (g,uugpo _ g,ucrgl/p)
_|_fadefbce (g,ul/gpa _ gupgyo)] )
b, 12 c, P
(3-6)
+ Ghost—gluon vertex
.a
a7
b
» m = —gfobept (3.7)
»
‘,C
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3.2 Vacuum polarisation

Vacuum polarisation in QED (recap)

Let’s quickly recap the features of vacuum polarisation in QED
(see also lectures by A Williams).

In general, we describe the vacuum polarisation tensor in terms
of all 1-particle irreducible corrections to the photon propagator:

\=PL

i =W

Since we must satisfy the Ward identity, this tensor can be writ-
ten in terms of a single scalar function:

" (q) = (9™ - ¢"¢") TI(¢?). (3.8)

The full correction to the photon propagator can be obtained by
summing the sequence of 1-PI graphs:

9 I-fT
w-./\@z\/v\/ — r~——f 7))
ya 1% P v

\-PL\-PT



» Because the tensor structure acts as a projector, this sum is rather

straightforward to compute as a geometric series: I'm hoping you've seen this or something similar before.
In this calculation, we started with Feynman gauge
propagtors £ = 1, but have different g* ¢” terms after
({/ resumming the interactions — this is a typical feature

M/\@\W o i ( . . qﬂ%) v and, by gauge invariance, doesn’t affect any physical ob-
/A g = q2(1 _ H(q2)) Guv q2 ? q4 . servables.
(3.9)
« Without repeating the details, we’ll simply note that the effect of
IT is to induce a ¢*>-dependent scaling of the field normalisation,
which ultimately can be absorbed into a running of the effective
charge.

« And how to calculate...
« We quickly revisit the calculation of IT at one-loop order. Writing

down the diagram and evaulating traces, we have: k+q
v 00 . d4k
Mg’ (a) = (=1)(~ie)’ / myat " Sr (17 Sr(k +a)l, 310) v
g [ A B @) 4 kGt " — gk (K + ) (3.11) T
B (2m)* [k + ie][(k + q)? + ie] ' k

Note that the trace identities are unmodified near 4 di-
mensions. For convenience, we've set the mass of the

+ We shift to d dimensions and write down the corresponding ex- | fermion in theloop to zero, m — 0. One may need to

take caution with infrared singularities, but this won’t

preSSionS for the tensor integrals (See the mini-appendix, § ): affect the leading UV renormalisation

. v (loo v 1 v v v
G (0) = —4e* [2 (40" = 59"0%) Bala®) + 0" Bala®) — ¢ Bu(a?)]
(3.12)
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and using the ralationships to express in terms of a single scalar

function:
.ruv (loop 2 d—2 2 2
ZHQE(D '(q) = —2¢ T Bold) (q g — q”q”) : (3.13)
« Isolating the scalar function I1(¢?), and inserting the expansion
for BO near d ~ 4, we have: For those watching closely, we cancelled the i on the
LHS with the 7 appearing in the expansion of B . Also,
9 note that “con§é i (;/v.ill Ffliff(ejmﬁ(;m the constant in the
4 aorD 2 —q expansion specified in Eq. b
Tloor) g2y — = 2Q —— +log— +const+O(4—d)|,

(3.14)

where we’ve substituted for the fine structure constant, aqep =

e2

E.
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» Now let’s consider the gluon self energy (QCD vacuum polarisa-
tion) at one-loop order, O(g?).

« We have the follow diagrams:

|
i+ o
J

~

(3.15)

+ As in the QED case, gauge invariance dictates that the polarisa-
tion tensor is transverse; and colour conservation will also guar-
antee that the tensor should be diagonal in colour. Hence we
should expect to be able to write:

« Let’s go through the diagrams one by one...
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« This loop looks almost identical to the one in QED above:

4 . .
i (O oo [ ANk 10 104
Mo~ (9) = Ny (=1)(ig) / (2m)4 ¢2 —ie (k + q)% + ie
X T [y R (K + )] 5t (3.17)

where the only appreciable difference is the additional colour fac-
tors, which give Tr a9 = Opded’ = %5““' , and a sum over flavours
(amounting to a factor of Ny which just counts each massless
quark).

« We hence recycle the solution that we obtained above (B.13):

. ! aa’ 2(d—2 v v
iy, V(q) = ~CrN;g*s (d_l)Bo(qQ) (29" —¢"a").
(3.18)

Yes, 2Cf is equal to 1, but we have it as explicit for the
moment.
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4-point bubble (IT)

« Since there is no momentum transfer this loop is simply propor-
tional to

1
d

which vanishes in dimensional regularisation — easy, we’re done: [ Evenifwe had momentum tranfer, it would be a single-
propagator bubble with no mass term — by transla-
tional invariance we could return it’s form to the same

'
7;]:[55/ (I1) (q) = 0. (319) integral and we’d still conclude that it vanishes.
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Gluon loop (III)

« Using our Feynman rules, we write down the gluon loop contri-
bution to the vacuum polarisation:

_ 921 d'k iébb’(_gw’) iécc’(_gpp/)fabc]ca’b'c'
2) @2m)t(q+k)?2+ic k*+ie
X Fggp(Q7 —q — k? k)]:‘g;ylpl(7Q7 q + ka 7]{7)7
(3.20)

where the vertex factors (defined above) are explicitly given by

it " (g)

050(a, —q = k k) = [¢" (2q + k)° + g7 (=2k — @) + 9" (k — )], (3.21)

g3

(3.22)
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N N ’
v e (fq,quk,fk) — [g,u/yl(72q7 k)p/ +g7'P (2]€+q),u’ +gp’,u/(q7 k)u :I )

?{—k
Y
q b v
—_ —_
.,
a M Ce de: o/ob
“L

The % factor is a symmetry factor, and we’re working in
the gauge ¢ = 0 (Feynman gauge).




+ The colour factors also simplify (using our knowledge of Lie al-

gebraS) , where we have: We make no distinction between upper or lower colour

indices — the location is purely for aesthetics. Sums
abc pa'b’c! abc pa’be aa’
Ovb Ot ff 470 = [ = Cad™ (3.23)

over repeated indices are assumed.
with C4 = N for SU(N).
+ Contracting our Lorentz indicies and performing some (tedious,

but not complicated) algebra, we find: In anticipation of performing our loop integrals in di-
mensional regularisation, we’ll do this generally for d
dimensions. Here that just means that we’re identify-

G G T T 7 ing T35 = a.
= [g" (2 + k)* + ¢""(—2k — q)" + g™ (k — q)"]
X [65,(_2‘1 —k)p + gup(2k + Q" + 55,(q — k)|, (3.24)
= —g""(5¢° + 2k + 2q - k) + (6 — d)g"q"
+2(3 = 2d)k"K* + (3 — 2d)(¢" k" + kM), (3.25)
=N (3.26)

+ Putting these together, we have:

dik NHH
(2m)? (k2 4 ie)((q + k)2 +ig)”
(3.27)

. ’ 1 _
i am = —5921\705@@'/1(1 4/

« We can now easily read off the relevant integrals using the results
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quoted in the mini appendix (Section B.9),

i / dik Nk
(2m)® (k? +ig)((q + k)? + ic)

= —g"" (5¢°Bo(q°) + 2¢°B1(¢*)) + (6 — d)¢"¢" Bo(q®)

! 1 /
+2(3 - 2d) (qu“ - " q2> Ba(q?)
+2(3 — 2d)¢"¢" B1(¢?). (3.28)

« Putting all our factors back together, and expressing all in terms
of the single scalar function B, we have:

Bo(q*)
Hd—1)

/

ZH::,’ (I11) (q) _ gQNcaaa/

[(Gd —5)¢%g"" — (7d - 6)q“q“/} .
(3.29)

« We immediately recognise that this term on it’s own is not trans-
verse — it doesn'’t satisfy gauge invariance! To make this more
obvious let’s separate off the offending term:

’ 1 B, 2 ’ ’ ’
ittt M0 (q) = g* N6 4(£(q 1)) {(6”1 -5) (""" —q"q" ) —(d—1)g"q" |,
— —_—
transverse

(3.30)

where the leftover ¢*¢* term will not satisfy gauge invariance.
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» The ghost loops act in such a way to cancel the unphysical degrees
of freedom that propagated in our gluon loop.

+ Using our Feynman rules, we have:

' d*k 0 i0ppr

'HML, (IV) = (—1)(— 2 cc bb
“Haa (@) = (=D)(=9) (2m)* k2 +ie (k+ q)% +ie
x f0 (k) R (3.30)

, 4 AT v’
S TN L Il e
(2m)* (K +ie)((q + k)? + ie)

(3.32)

« Using our integrals (§5.9), we obtain:

ZHZZL// (IV) (q) — _gQNC(Saa’ |:(quq,u,/ _ éguu'qQ) B (q2) + quM/Bl (qQ)] 7
(3-33)
and reducing in terms of the single scalar function B, we find:

' Bo(q®)

.H;L[,L:<IV) _ 2N85aa
il @) =g d-1)

{(ffg“” —q"¢") +(d—1)q"¢" } :
———
transverse

(3.39)

« We can clearly read off that gauge-symmetry violating term ex-
actly cancels that coming from the gluon loop, rendering the sum
of the two terms purely transverse.
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PSS TS /
q_/_a lb(// ° ,b —d

\L2Qe @ '\_u_a.slﬂe )
au c\\\ d ap

S < -

e

le

There’s no symmetry factor in this case (the ghost and
anti-ghost are distinct). The (—1) factor out the front
is from the anticommutation of the ghost fields — just
like for a closed fermion loop.

Note we pick up a minus sign from the colour factors
/7 ’
here: fbacfea’b — _ N saa’




« We complete this part of the calculation by summing up each of
the loop contributions:

(q) = TN () + T (g) + ™ (q) + TT™)(g)
= il (g) = daur (49" — ¢"0") 4* Bo(4?)

<CA ?Z ?) CrNy 52)> : (3.35)
« Itis the log ¢*> dependence that is most relevant to the running of
the coupling, so we’ll just summarise this term near d ~ 4: [Iéti:e:\/vel’l};xplicitly plug back in C4 = No and]
2 9 o
II(g*) ~ (42 (3N 3Nf) log —5- 2 —i—poles +.... (3.36)

« Importantly, the gluon loop appears with an opposite sign to the
fermion loop contribution. In contrast to the screening phenom-
ena in QED, the gluon loops give rise to anti-screening.
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« Having (mostly) completed the renormalisation of the gluon prop-
agator, to compute the full running of the coupling we also need
to consider the renormalisation of the quark wavefunction and
quark—gluon vertex. Hence we need to compute the electron self-
energy and the vertex correction... left as a homework exercise.

 Graphs:

H%

alb s

« For completeness, we’ll state the final result for QCD’s /3 function
at leading order:

3111 4
IR 5 Ca— 3N Cr|. (3-37)

B(QR) = _1671'2 3

65

We've had to skip some of the specifics about imple-
menting a renormalisation scheme, but we’ll just note
that the 3 function tells us how the (renormalised) cou-
pling constant changes with renormalisation scale, par-
ticularly:

; d
7udugz~2»




3.3 Mini-appendix on some massless integrals in dim
reg

« In the self-energy graphs above, we encounter loop integrals of

the form: Note the introuction of the scale 4 to ensure that the
dimensionality of the loop is preserved at arbitrary d.

{B(q), B"(2), B" ()}

4_d/ dik {1, kM, krEY)
(2m)d (k2 +ig)((k + q)* +ig)
(3-38)
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» We reduce the tensor integrals in terms of scalar functions:

B(q) = u‘”/
d
B"(q) :u“’d/ (d -

2m)d

B"(q)

dk

1

(2m)4

(k2 +ie)((k + Q)2 +ie) Bo(a”),

kM

(k2 +ie)((k + @)% +ig)’

1
=¢"Bi(¢?) = —§QMBO((I2)~

kH* kY

‘u4fd/ d’k
(2m)

1255) v 1 v
9" B (q*) + (q”q - 59" qz) Bs(q?),

d
4(d—1)

(k2 +ie)((k + q)? + ie)

Bo(q?).

» And we quote the leading expansion for By near d = 4:

Bo(q?)

~

i

(4m)? |4 —d

2
+logu—%+const+(’)(4—d) .
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(3.39)

(3.40)

(3.41)

(3.42)
(3.43)
(3.44)

(3-45)

At spacelike momenta, g2 will be negative and hence
the argument of the log will be near the positive axis,
rendering the ie irrelevant. We'll ignore it here, but it
can be restored with a little patience.




4 Lattice QCD

Notes inspired by P Shanahan (MIT): “2022 TMD Winter School”.
Any errors would be mine.

68



4.1 Euclidean, discretised path integrals
Euclidean path integrals

 Generating functional contain all information about the theory:

2, = / DADFDY exp {z / d'x (Lacp + AP + i+ Tn)
——

(4.1)

« Correlation functions expressed as derivatives of Z with respect
to sources:

1 )

O @)i) - H) = s g 21l

J=n=n=0
(4.2)
+ In order to compute, we must define the path integration mea-
sure appropriately, and regularise the action.

— Perturbation theory: Compute the quadratic (Gaussian) part
directly and expand correlators in powers of the interaction
couplings.

— Lattice: Define Z directly through lattice regulator, valid be-
yond perturbation theory, provides a numerical evaluation ap-
proach.

69

The integrations, DA . . ., represent integrals over all
possible gauge and fermion fields — i.e. something like
all possible paths through configuration space.

The fermion fields must be anticommuting to ensure
that they obey Fermi-Dirac statistics and hence are rep-
resented as Grassman numbers.




« Integrand from e~*“ecp is highly oscillatory, such that the evalu-
ation requires delicate cancellations between different regions of
phase space — difficulties for numerical implementation.
= Solution is to Wick rotate (¢ — —itg) from Minkowski to Eu-
clidean space-time. Gives a probabalistic interpretation to func-
tional integral: The exponential is exactly the Boltzmann weighting of]

a statistical ensemble.

_ ;oM _q&
e~ ¥qop —y ¢~Sae
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« Discretise theory onto e.g. 4D cubic lattice of spacing a.
— The action integral is rewritten as a discrete sum:

/d4x —at Z, (4.3)
A

with spacetime being represented by the discrete set of points:

In practice, lattice are of finite extent by imposing
boundary consitions, e.g. (anti-)periodic.

A= {m€R4|m:an,nEZ4}. (4.4)

— The quark fields take values on the lattice sites, 1 (z) — ¥(an),
with n € Z*%.

— And (as we will soon see), in order to maintain gauge invari-

ance in the discretised theory, it is convenient to define gauge
link variables,

Au(xz) = Uy(an) = exp (—iagA,(an)). (4.5)

— The integrations over paths are replaced by the integration
over all values of the fields at each site (or link):

e.g. / Dty — / I dv(an).

FASIAN

71



« Any operator of interest is then expressed as:

(©) = ;0 [ PUDUDTe S0 U,y F0lU, b, ). (4.6)

« Since the action takes the form Sqcp = Sgiue + J VM), the inte-
gration over the fermion fields is Gaussian and can be done ex-
actly. The dependence on 7, in © are then replaced by corre-
sponding Wick contractions of the field operators, resulting in
factors of the inverse of the Dirac matrix:

(©) = ;()/DU det M[U]e%enelVlo[U, MU (4.7)

+ The field integrations are reduced to just integrating over the
gauge links.

« The operator O will be specific to the quantity of interest, will the
integrand having a common weight factor:
e~ amelUl et MU
— We sample to the space according with this weight as a prob-
ability measure.

— Do this via a Markov chain process U} — Ul — ... with
transitions required to satisfy conditions such that the desired
probability distribution emerges as equilibrium distribution
of the process.
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The operator here can be any possible product of fields
at arbitrary spacetime points— though in practice, we
are mostly interested in 2-, 3-point functions of colour
singlet (i.e. gauge invariant) operators.




« Once a representative set of configurations is available, observ-
ables can be computed as simple averages:

Negg

© =3 o] +0< 1 ) , 4.8)

cfg

where the error term represents the fact that we only have a finite
statistical representation of the full path integral.

« Complete calculations require dealing with:
— Statistical uncertainties: N.;, — “large”.

— Systematic uncerainties: multiple lattice spacings (couplings),
box sizes, etc.
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4.2 Defining lattice actions

In continuum field theory, in order to construct a gauge symme-
try, we were forced to demand the existence of a gauge field in
order to define the covariant derivative — the same is true in a
lattice formulation.

Consider the Euclidean Dirac action for a free fermion:
[ e 5@ 9+ ml (@), 4.9)

If we discretise the derivative (e.g. by the symmeteric finite dif-
ference) we obtain the replacement:

B)Poe) = 5 3 [Blab(n+ ) — Bn)yab(n — ),

(4.10)

and we observe that the products involve field operators that are
spatially separated.

These terms cannot possibly transform invariantly under local
gauge transformations, e.g.

Y(n) = Qn)p(n), d(n) = $(n)Q(n), Qn) € SU).
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lattice spacing to 1, a — 1. We'll restore a from time

From now on, I'll mostly be setting the factors of the
to time when we wish to be explicit.

]




In order to obtain a loal gauge symmetry, we must introduce “gauge
links” as parallel transport operators, U,,, which have the trans-
formation law:

Uu(n) = Qn)U,(n)Q (n + f), (4.11)
and we replace the terms in the naive finite difference with terms
involving the gauge links:

D)y (n + i) = P(n)yUu(n)(n + ), (4.12)
which automatically satisfies the gauge desired gauge invariance.

These gauge links are a special case of parallel transport oper-
ators that map coordinates in an internal symmetry space from
one point to another:

Uu(n) = Pexp [z/ dNA,(n+ M) | = expiad,, (4.13)
0
— 1+ iaA,(n) + O(a?), for small a. (4.14)
We hence identify the gauge links on the edges of the lattice:

(\Lacﬂ

Uu(n) = UL, (n+ p).
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« Hence we construct the “naive” fermion action:

plU 0, 9] = Zw ) {9 [Un(n)o(n + ) = Uf(n —

nEA

= ) Pm)MEe[UNp(m),

n,meA

with M2aive[]] defining the naive fermion matrix.
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« The Taylor expansion of U,,, ¢ in a gives O(a?) errors. BUT “dou-
bling problem”: First-order derivative only couples sites sepa-
rated by 2a — in the continuum limit there are 2¢ = 16 quark
flavours instead of 1.

« Nilsen-Ninomiya no-go theorem: It is not possible to construct
a lattice fermion action that is (ultra)-local, chirally symmetric,
free of doublers & have the correct continuum limit.

« We make a choice about how implement the discretisation of the
fermion action:

Wilson fermions: breas chiral symmetry explicity (even when
m = 0) by adding a second derivative term that acts as a
large mass (on the order of the cutoff) at the doubler poles,
but is irrelevant at zero momentum — i.e. it drives the dou-
blers to higher energies by introducing a term in action that
vanishes as a — 0.

Staggered fermions: distribute the 4 components of teh Dirac
spinor to different lattice sites — 4 species or “tastes”, break
taste symmetry.
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Ginsparg-Wilson fermions: Preserve “lattice chiral symme-
try”, i.e. Ginsparg-Wilson relation, the reduces to usual chi-
ral symmetry in the chiral limit. Various examples:

— Domain-wall fermions (Kaplan & Shamir)

— Overlap fermions (Narayanan & Neuberger)

— Perfect actions / fixed-point fermions (Hasenfratz et al.)
BUT computationally more expensive.

« Which fermion action is best can depend on the particular ap-
plication.
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+ Closed paths of gauge links (Wilson loops) can be used to con-
struct all gauge-invariant quantities involving only gague fields.

« As for fermions, precise choice of gauge action is irrelevant if it
has the correct continuum limit.

» The simplest closed loop is the 1 x 1 plaquette:
P = Re Tr U, (n)U, (n + @)U} (n + 2)US ()] (4.16)

which we can Taylor expand the path-ordered expression for U,
in terms of A, to identify:

1
Py, ~1- §g2 Tr {[FW(n)P} + O(g%a?, a*, g*a?). (4.17)

+ Allowing us to write the Wilson gauge action:

SWiU] = ;22 ST 1= Pu(n)] 2;2 ST [P
(4.18)

 Can “improve” the gauge action by including additional loops (e.g.
1 x 2 rectangels) with coefficients tuned to remove leading dis-

cretisation artefacts. Names like “Iwasaki”, “tree-level improved”
gauge actions etc.
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Now we write the total lattice action as

Sqcp = SalU] + Sr[U, ¥, 9. (4.19)

SU(3) gauge: preserved by lattice actions.
Lorentz: broken down to hypercubic H(4) = induces operator
mixing.

Chiral: depends on (fermion) action.
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4.3 Correlators and the spectrum

What can be computed in LQCD are Euclidean n-
point correlation functions — relate physics of inter-

est to matrix elements of local (or non-local) opera-
tors.

« We can calculate the mass of the pion from 2-point correlation
function.

+ Consider two equivalent expresseions for hadron 2-point curre-
lator:

Cr(x,t) = (0]0x(x, 1)01(0,0)|0), (4.20)
Trace in Hilbert space (transfer matrix):
- %Tr [ 1T=09, (x)e= 61 (0)]) (4.21)
Path integral:

- / DUDYDFe St Jv VMg (x 1)61(0,0) (4.22)

81



+ The operator 0, [U, v, ] is an “interpolating operator” with the
quantum numbers of the state of interest, e.g. for a pion:

O (x) = u(x)ysd(z). (4.23)
« Firstly, starting from Eq. (4.21, we rearrange to solve for the ¢-
dependence of Cﬂ— (X, t) I'lluse T to denote the full temporal extent of the lattice
— where (anti-)periodic boundary conditions are used
1 f{ T8 A Ht R for the (quark)gluon fields.
Cr(x,t) = E Tr [e— =00, (x)e~G1(0)] , (4.24)
== Z ple™ M09, (x)e="0%(0)|p), (4.25)

pr\e HT=04_(x)|o) (ol T01(0)|p), (4.26)

=3 Z P00 Eet (0], (x)|o) (o105 (0) ).

X

(4.27)
+ Similarly,
Z =3 (ple Mgy = 3 e BT, (4.28)
p P
~ ¢~ EoT (1 4 ART | ~AET | ) ) (4.29)

where we've used AFE,, = E,, — Ey and vacuum energy Ej.
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By taking the limit 7" becomes large, only |p) = |0) contributes to
Eq. (4.27) and Z, and hence

Cr(%,1) 725 570010 (%) |0 (o1 0) e~ AFw ¢, (4.30)
and we can project onto zero momentum by taking a sum over x:
Ca(t) =D Ca(x,t) = Y |Z,[ ™" (4.31)

x o(p=0)

+ We see that this correlator depends of the energies of all states for
which Z, # 0 — i.e. those that can be created from the vacuum
by the creation operator, 61 (x,t).

« In general, a creation operator creates a state that is a linear su-
perposition of all possible eigenstates of H that have the same
quantum numbers as the pion. For example: pion, excitations of
the pion, three pions in J = 0, I = 1 state, etc.

However, particular operators can have “stronger” overlaps onto
some states compared to others.
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» Now let’s see how to use the path integral representation to com-
pute C in LQCD:

Cr(x,t) = / DUDYDG e Ssmwef, PMY

X (X, 1)V5%a(x, 1) ¥a(0)75¢u(0), (4-32)
= /DU det M,, det M e~ Jgtue
X Tr M, (@, 0)95M " (0,2)35) (4.33)
1 chg
= ~— Y Tr [M UM Ul (4.34)
chg j=1
where the ensemble of gauge configurations is {Us, ..., Un,, }.

And, as above, we sum over all (spatial) positions x to project
onto the zero-momentum correlator, C(t).
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The quark propagators, M ~ !, are computed by matrix
inversion.

]




« Having computed C,(¢) numerically, we can fit the functional
form from the transfer matrix to determine the mass of the light-
est state with the given quantum numbers.

— Specifically, we write:

Cr(t) = | Zo[2e™™0t + | 212" ™ 4 ... (4.35)

— Often, it can be helpful to visualise the numerical results in
terms of an “effective mass”:

1 Cx(t)
() = = log —2
mers(t) = 518 & s o)

with Am being the gap to the first excited energy level in the
channel of interest.

=mo+ de 2™+ ., (4.36)
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— We estimate my as the average of points in the “plateau” re-
gion.

— More sophisticated: fit to (multi)-exponential functional form
(x? minimisation etc.). Note that it’s essential to take consider
correlations in underlying statistical ensemble.
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« We'll consider the isovector axial coupling of the nucleon — this
is the QCD part that dominates calculation of the neutron beta
decay.

« The matrix element of interest is defined by
(N(P)| 17573 I N (P)) = 9aTip(P)VuY5Up(P)- (4-37)
3
Au

+ We relate the desired matrix element to a (Euclidean) 3-point
function:

C3(t,7) ZTr[ —H(T-0g (%, t)e*f“t*”Ai(y,T)e*f”ejv(o)} :

(4.38)
23N TS 010w n) (nle™ M A3 (v, e T jm) (ml 0k [0),

X,y n,m

(4-39)
=N 2z e BT e T (n] A m). (4.40)

X,y n,m

+ At large times (in both times), we saturate to the ground states,
and hence isolate the matrix element on interest.
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We use the 2-point functions with same 6 to determine Z,, and
E,. In practice, it is often useful to construct ratios of 3-pt/2-pt
to eliminate leading time dependence before fitting.

For the lattice calculation, we construct the same 3-point func-
tion and express in terms of appropriate quark propagators (from
Wick contraction field operators). Often we’ll represent this in
terms of “skeleton diagrams”:

j.l/“
1 — o
?@a % 9 B
IMN
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2-pt functions spectroscopy (and including resonant excitations),
decay constants,...

3-pt functions [local operators] g 4, scalar charges (for dark mat-
ter o), nucleon electromagnatic form factors, moments of par-
ton distributions, B—= decay form factors to constrain CKM
matrix elements...

3-pt functions [non-local operators] quasi/pseudo PDFs, trans-
verse momentum distributions, ...

4-pt functions double-3 decay matrix elements, K—K mass dif-
ference, hadron tensor, (virtual) Compton amplitude, ...
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» There are some many good lecture notes available, including:
— Lepage: “Lattice QCD for novices”, hep-lat/0506036.
— Gupta: “Introduction to Lattice QCD”, hep-lat/9807028
— L”uscher, “Computational strategies in LQCD”, arXiv:1002.4232
[hep-lat].
» Some more recent(ish) texts:

— Knechtli, Giinther & Peardon: “Lattice Quantum Chromody-
namics: Practical Essentials”

— Gattringer & Lang: “Quantum Chromodynamics on the Lat-
tice”

— DeGrand & DeTar: “Lattice Methods for Quantum Chromo-
dynamics”

+ And the classics texts:
— Creutz: “Quarks, gluons and lattices” (reissued Open Access
in 2022)

— Montvay & Miinster: “Quantum fields on the lattice”
— Rothe: “Lattice gauge theory”
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