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Overview

1. Brief history of crystals and their geometry 
2. Crystalline symmetries – lattices 
3. Periodic nets 
4. Crystalline symmetries – the space groups  
5. Orbifolds – geometry and topology of the space groups 
6. Pattern enumeration within orbifolds

– Delaney Dress combinatorial tiling theory
– RCSR and EPINET databases
– … and the current frontier
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…crystals are naturally occurring geometric forms

Note the 
dodecahedral and 
icosahedral forms are 
not truly regular

Many chemically pure solids are crystals or made up of small crystals: e.g. salts, metals, minerals. 

X-ray diffraction allows us to deduce the locations of atoms in the crystal. (Laue, Braggs (1912)). 

Knowing the atomic arrangements in solids and molecules enables us to understand how 
structure influences properties and then use this to engineer new materials. 

e.g. to predict thermal, electrical, magnetic properties of crystals. 



how did scientists deduce the internal structure? 

Haüy showed how regular stacking of “integral molecules” could explain 
the observed law of the constancy of interfacial angles [Stensen (1660s), de l’Isle (1770s)]  
and led him to derive the law of rational indices. 

Haüy’s theory of crystal habit (1784)



A material is a crystal if it has an essentially sharp diffraction pattern.
“essentially sharp’’ means isolated local maxima of intensity
Note: this definition is made to include quasicrystal diffraction patterns. 

International Union of Crystallography definition

Bragg’s law: 
diffraction peaks occur at angles 
related to the wavelength and
lattice plane spacing

Each spot above is due to a different 
incident wavelength and lattice plane. di

ffr
ac

tio
n 

by
 S

ili
co

n 
fro

m
 th

e 
Di

am
on

d 
lig

ht
 so

ur
ce

, U
K.

 

The locations and intensities of the spots give the 
magnitudes of the Fourier series coefficients of the 
electron density in the crystal, r(r).  

… but the Fourier coefficients are complex numbers,
so this is not quite enough information to invert the FT 
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What crystalline structures are possible? 
(within some physically meaningful class) 

We assume structures that have genuine translational symmetry.
i.e., they have infinite extent,  no defects,  no quasicrystals.

What are some physically/ chemically meaningful classes? 
1. Lattices (point patterns generated by translations) 
2. Symmetric packings of spherical or ellipsoidal ‘grains’  
3. Symmetric arrangements of coordination polyhedra, other extended figures
4. Periodic geometric graphs with high symmetry 
5. Periodic (minimal) surfaces
6. Decorations of periodic surfaces  

Mathematical challenge:

Solving a crystal structure, i.e., finding the electron density r(r), therefore 
requires more than just the intensities of the peaks. 

Typically, simulated diffraction patterns from hypothesized models are 
tested against the observed pattern. 
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diamond

sphere packing to simple covalent bonding structure

zeolite LTA metal organic frameworks multicomponent entangled MOFs

increasingly complex framework materials 



On the colour of wing scales in butterflies: iridescence 
and preferred orientation of single gyroid photonic 
crystals RW Corkery, EC Tyrode Interface Focus 
(2017)

The multiple faces of self-assembled lipidic systems.
G Tresset PMC Biophys (2009)

P surface Gyroid D surface

Highly symmetric, triply-periodic 
minimal surfaces form e.g. as 
self-assembled bilayers of lipids 
called “cubic phases”. see  e.g.
ST Hyde et al “The Language of Shape” (1996)



Mathematical challenge:  What crystalline structures are possible 
assuming structures that have genuine translational symmetry? 

Lattices, Point groups, Space groups (in R3)
Isometries of R3 are translation, rotation about a fixed line, screw rotation,  

inversion in a point, roto-inversion, reflection in a mirror plane, glide translation. 

Lattice: given three linearly independent vectors in R3,  a,b,c,
a lattice is the set of all points ha + kb + lc where h,k,l are integers. 
There are 14 different symmetry classes of lattice. (Bravais, 1848) 

1 parameter

2 parameters

3 parameters

2 parameters

4 parameters 6 parameters



Mathematical challenge:  What crystalline structures are possible 
assuming structures that have genuine translational symmetry? 

Lattices, Point groups, Space groups  (in R3)

Isometries of R3 are translation, rotation about a fixed line, screw rotation,  
inversion in a point, roto-inversion, reflection in a mirror plane, glide translation. 

Lattice: given three linearly independent vectors in R3,  a,b,c,
a lattice is the set of all points ha + kb + lc where h,k,l are integers. 
There are 14 different symmetry classes of lattice. (Bravais, 1848) 

Space group: A discrete group of isometries of R3 that contains a lattice subgroup.
There are 230 space groups (Federov, Schoenflies, 1890-91)

How can we best understand the space groups? 

Point group: A symmetry group that fixes at least one point.  
There are 32 point groups compatible with translational symmetry (Hessel, 1830)
Rotations must be of order 2,3,4 or 6. 

This result is derived by considering the Wigner-Seitz cells because
they can be shown to have the full symmetry of the lattice. 



The Regular Polyhedra – most symmetric finite objects
point group

*233

*234

*234

*235

*235

other point groups come in families based on  *NN,  *22N 

images from wikipedia



possibilities compatible with crystallographic symmetry). A
quasiregular net has a vertex figure that is a quasiregular
polyhedron, namely a cuboctahedron. It is straightforward
to show these are the only possibilities and that there is just
one 3-periodic net for each case, except for the case of the
hexagon which can only lead to a 2-periodic structure.14 In
Fig. 5 we show these nets and their augmented forms and some
of their properties are listed in Table 1. They are:
srs. 3-coordinated, vertex figure triangle. The net has the

same topology as the –Si–Si– net in SrSi2, hence the symbol. It

has some special properties: it is the only chiral (symmetry
I4132) regular net and it is the only 3-coordinated 3-periodic
net with 3-fold symmetry axis at the site of the vertex (actual
symmetry 32 = D3), and thus the only 3-coordinated net with
one kind of edge.
nbo. 4-coordinated, vertex figure square. This is the net of

the atoms in NbO, hence the symbol.
dia. 4-coordinated, vertex figure tetrahedron. This is the net

of the diamond structure met above and, we hope, familiar.
pcu. 6-coordinated, vertex figure octahedron. The augmen-

ted net (linked octahedra) is the –B–B– net in CaB6 and is
given symbol cab. pcu is special in the sense that it is the net of
the only regular tiling of Euclidean space (a tiling of space by
just one kind of regular polyhedron).
bcu. 8-coordinated, vertex figure cube. This is the net of the

body-centered cubic lattice, considered as 8-coordinated (we
also like on occasion to include second-nearest neighbors to
then consider body-centered cubic as 14-coordinated, but then
the net is different and we use symbol bcu-x). The augmented
net (symbol pcb) is made up of linked cubes and sometimes
called polycubane.
fcu. 12-coordinated, vertex figure cuboctahedron. This is the

net of the face-centered cubic lattice and well known as the
structure of cubic closest sphere packing. Also familiar is the
fact that there are two kinds of hole in the structure corre-
sponding to the centers of the two kinds of tile. The tiles are
regular tetrahedra and octahedra which occur in the ration
2:1. The augmented net (symbol ubt) is the –B–B– net of UB12.

Fig. 4 The augmented version of a tiling of a cylinder by squares. This

is the only one-periodic way of linking polygons by one kind of edge.

Fig. 5 The regular and quasiregular (fcu) nets in their normal and augmented conformations.

1038 | Phys. Chem. Chem. Phys., 2007, 9, 1035–1043 This journal is !c the Owner Societies 2007

The Regular Nets – most symmetric periodic frameworks

What are the 
highest-symmetry 
periodic nets?

Vertex figures are
regular polygons or 
polyhedra

All vertices related by
symmetries of the net

Vertex site symmetry*
is a symmetry of the net

see ODF, O’Keeffe, Yaghi
(2003) Acta Cryst A.

http://rcsr.net/

* only orientation preserving isometries face-centred cubic is quasi-regular



Periodic surfaces are 
covered by the 
hyperbolic plane

See http://epinet.anu.edu.au

“The monster paper”
Ramsden, Robins, Hyde
Acta Cryst A (2009)

image credit: Stuart Ramsden

http://epinet.anu.edu.au


International Tables for Crystallography
http://it.iucr.org (definitive but paywalled) 
http://www.cryst.ehu.es (Bilbao crystallographic server, free)

Standard classification is by lattice type, centering, point group symmetry
e.g.  P432  has a cubic lattice, primitive centering (no extra translations),  

point group is 432 (i.e. the octahedral group) 

International tables list the 
location of the origin, generators for the lattice
order of the group modulo lattice translations
one rep. for each symmetry operation (wrt crystallographic coordinates)
Wyckoff “special positions” (i.e. fixed points, lines, planes)
Asymmetric unit (i.e. a fundamental domain for the group)

The tables are “data heavy”, not at all intuitive or easy to visualize 
without long term experience and memorization.  

enter Orbifolds: a topological perspective on 
geometric groups (Thurston, 1970s, after Satake, 1956)

http://it.iucr.org
http://www.cryst.ehu.es


image credit: Martin von Gagern - http://www.morenaments.de/gallery/exampleDiagrams/

2d topology warm-up
Symmetry group is G, translation lattice subgroup is L ≈ Z2

We’re going to construct the quotient spaces:  R2/L and R2/G

http://www.morenaments.de/gallery/exampleDiagrams/


R2/L 
the translational cell 
glues up into a torus

R2/G
the asymmetric domain
glues up into a sphere 
with four cone points.



2-orbifolds are compact 2D manifolds with a finite number of boundaries 
and marked cone points. 

2D orbifolds of geometric groups are completely classified using the same 
techniques as the classification of 2-manifolds by their Euler characteristic. 

Spherical 2-orbifolds have  K > 0
Euclidean one have K = 0
Hyperbolic 2-orbifolds haves K < 0  



There are 17 crystallographic plane groups, “wallpaper groups”
identified up to isomorphism by their quotient spaces R2/G

(Conway 1992)
(Int. Tables Cryst)(Hyde, Ramsden, R. 2014)



images produced using Olaf Delgado-Friedrich’s Web Gavrog http://gavrog.org/webGavrog/

3-torus = solid cube with opposite
faces glued together 

C

C

BB

3d periodic patterns   ↔ 3-torus



Rotational symmetries of simple cubic structure

two types of 
4-fold rotation
axes 3-fold

three types of 
2-fold rotns



1. fundamental domain 
is 1/24th of the cube

2. glue two tetrahedra 
along (mirrored) faces

3. get a 3-sphere with
internal singular lines 
and singular points

S3 = R3 u {∞}

this is the orbifold diagram
for space group P432

Rotational symmetries of simple cubic structure



3. The minimal surface version of 
this periodic surface is 
Schwarz’s Primitive (P) surface

1. a sphere inside the 3-orbifold 
is a 2-orbifold for a periodic surface

surfaces inside orbifolds image credit: Myf Evans

2. unfolded to a unit cell
the surface has genus 3



a

b

c

d

(3) (4)

(4) (2)

(2)

2d orbifold: 2424
surface genus: 7
bcu / nbo labyrinth
IWP is min surf rep.

4 SHENG BAI, VANESSA ROBINS, CHAO WANG, AND SHICHENG WANG

2. Upper and lower bounds of extendable finite groups

We need the following two important results, see [Hu], [MY], to prove
Theorem 1.4.

Riemann-Hurwitz Formula. Σg → Σg′ is a regular branched covering
with transformation group G. Let a1, a2, · · · , ak be the branched points in
Σg′ having indices q1 ≤ q2 ≤ · · · ≤ qk. Then

2− 2g = |G|(2 − 2g′ −
k∑

i=1

(1− 1

qi
))

Equivariant Loop Theorem. Let M be a three manifold with a smooth
action of a discrete group G. Let F be an equivariant subsurface of ∂M .
If F is not π1-injective with respect to inclusion into M , then it admits a
G-equivariant compression disk.

Here a nonempty subset X of M is G-equivariant if h(X) = X or h(X)∩
X = ∅, for any h ∈ G. A disk D ⊂ M is a compression disk of F if ∂D ⊂ F
and in F it does not bound any disk.

Proof of (1). Suppose there is an extendable G-action on Σg which preserves
the orientation of both T 3 and Σg. Cutting T 3 along e(Σg) we get a three
manifold M . Since both Σg and T 3 are orientable, Σg must be two-sided in
T 3, therefore M contains two boundaries F1 and F2, and F1

∼= F2
∼= Σg.

Now clearly G acts on M . Since the G-action preserves the orientation of
both T 3 and Σg, each of F1 and F2 is a G-equivariant surface. Since g > 1,
π1(Σg) is not abelian, but π1(T 3) is abelian so the induced homomorphism
π1(Σg) → π1(T 3) is not injective. Then at least one of F1 and F2 is not π1-
injective with respect to inclusion into M . Suppose F1 is not π1-injective,
then it admits a G-equivariant compression disk D of F1 by the Equivariant
Loop Theorem.

If there exists an h ∈ G such that h(D) = D and h reverses an orientation
of D, then we can choose a G-equivariant regular neighbourhood N(D)
of D such that there is a homeomorphism i : D × [−1, 1] → N(D) and
i(D× {0}) = D. Then D′ = i(D× {1}) is also a G-equivariant compression
disk of F1, and clearly for this D′, if h′(D′) = D′ for some h′ ∈ G, then h′

preserves an orientation of D′. Hence we can assume each element of G that
preserves D also preserves its orientation, in particular it is fixed point free
on ∂D.

Since the G-action on T 3 preserves the orientations of both Σg and T 3,
the induced G-action on M preserves F1. With the quotient topology F1/G
is homeomorphic to some Σg′ , and p : F1 → F1/G is a regular branched
covering. Since the G action is fixed point free on ∂D by previous discussion,
p(∂D) is a simple closed curve in F1/G.

Let a1, a2, · · · , ak be the branch points having indices q1 ≤ q2 ≤ · · · ≤ qk.
Note 2− 2g < 0. By the Riemann-Hurwitz Formula we have

|G| = 24
g’ = 0 
qi = cone pt orders

image credit: Stuart Ramsden
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2d orbifold: 2434
surface genus: 9
ftw / ftw labyrinth
Neovius C(P) min surf

4 SHENG BAI, VANESSA ROBINS, CHAO WANG, AND SHICHENG WANG

2. Upper and lower bounds of extendable finite groups

We need the following two important results, see [Hu], [MY], to prove
Theorem 1.4.

Riemann-Hurwitz Formula. Σg → Σg′ is a regular branched covering
with transformation group G. Let a1, a2, · · · , ak be the branched points in
Σg′ having indices q1 ≤ q2 ≤ · · · ≤ qk. Then

2− 2g = |G|(2 − 2g′ −
k∑

i=1

(1− 1

qi
))

Equivariant Loop Theorem. Let M be a three manifold with a smooth
action of a discrete group G. Let F be an equivariant subsurface of ∂M .
If F is not π1-injective with respect to inclusion into M , then it admits a
G-equivariant compression disk.

Here a nonempty subset X of M is G-equivariant if h(X) = X or h(X)∩
X = ∅, for any h ∈ G. A disk D ⊂ M is a compression disk of F if ∂D ⊂ F
and in F it does not bound any disk.

Proof of (1). Suppose there is an extendable G-action on Σg which preserves
the orientation of both T 3 and Σg. Cutting T 3 along e(Σg) we get a three
manifold M . Since both Σg and T 3 are orientable, Σg must be two-sided in
T 3, therefore M contains two boundaries F1 and F2, and F1

∼= F2
∼= Σg.

Now clearly G acts on M . Since the G-action preserves the orientation of
both T 3 and Σg, each of F1 and F2 is a G-equivariant surface. Since g > 1,
π1(Σg) is not abelian, but π1(T 3) is abelian so the induced homomorphism
π1(Σg) → π1(T 3) is not injective. Then at least one of F1 and F2 is not π1-
injective with respect to inclusion into M . Suppose F1 is not π1-injective,
then it admits a G-equivariant compression disk D of F1 by the Equivariant
Loop Theorem.

If there exists an h ∈ G such that h(D) = D and h reverses an orientation
of D, then we can choose a G-equivariant regular neighbourhood N(D)
of D such that there is a homeomorphism i : D × [−1, 1] → N(D) and
i(D× {0}) = D. Then D′ = i(D× {1}) is also a G-equivariant compression
disk of F1, and clearly for this D′, if h′(D′) = D′ for some h′ ∈ G, then h′

preserves an orientation of D′. Hence we can assume each element of G that
preserves D also preserves its orientation, in particular it is fixed point free
on ∂D.

Since the G-action on T 3 preserves the orientations of both Σg and T 3,
the induced G-action on M preserves F1. With the quotient topology F1/G
is homeomorphic to some Σg′ , and p : F1 → F1/G is a regular branched
covering. Since the G action is fixed point free on ∂D by previous discussion,
p(∂D) is a simple closed curve in F1/G.

Let a1, a2, · · · , ak be the branch points having indices q1 ≤ q2 ≤ · · · ≤ qk.
Note 2− 2g < 0. By the Riemann-Hurwitz Formula we have

|G| = 24
g’ = 0 
qi = cone pt orders

image credit: Ken Brakke



William D. Dunbar

TABLE 4
Euclidean orbilolds: typc 4

EP432] ~ [F23] a

[P4232] a

[P213] a

2
3

[123] a

[¡23] a

(underlying space —FP’=3-ba¡l

86

[¡‘432] a

[P23] a [F4~32] a

[l4~32] a

½
[P4~32]

[1432] a

w/antipodal: bdr-4bdy)
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[P4232] a
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2
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[¡23] a

(underlying space —FP’=3-ba¡l

86
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[P23] a [F4~32] a
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William Dunbar’s 3-orbifold diagrams of the 12 orientation preserving cubic space groups.
11 diagrams show singular lines in a 3-sphere. One diagram has RP3 as its underlying space.
“Geometric Orbifolds” Revisita Matematica (1988)

systematic study of these diagrams leads us to find all highest-symmetry surfaces in the 
3-torus:  arxiv:1603.08077 (Bai, Robins, Wang, Wang) 



e (3)
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c d

h axis from a to c
2d orbifold: 2223
surface genus: 3

srs(+) / srs(-) labyrinths
Gyroid is min surf rep.

I4132

e (3)

g(2)

h (2)

f (2)

a

b

c d

h axis from a to d
2d orbifold: 2223
surface genus: 3

27 srs(+) labyrinth !!
NO min surf rep
because the genus-3 surface 
is knotted in the 3-torus.

CAUTION:
can’t “see” the fact that
the labyrinth disconnects
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Big thanks to Stu Ramsden for his Space Group
Symmetry package in Houdini. 



Next steps:

Describe the high-symmetry, low-genus surfaces in these 12 space groups. 
Every single one accommodates a structure related to P, D or Gyroid surface,
sometimes higher-genus, lower symmetry or knotted versions. 

Extend to all 35 cubic space groups 
(since each has a single orientation-preserving subgroup)

This gives us ways to map 2d hyperbolic geometry into 3d space groups, 
see, for example: Hyde, Robins, Ramsden (2014) Acta Cryst A p.319

and potentially to map (some) 3d periodic objects to 2d hyperbolic patterns. 

Implications for describing self-assembled structures? 

Focus on orientation-preserving space groups means it is possible to 
“see” the structure of the 3-orbifold, 
clear definition of bi-continuous structure as two sides of the surface. 

No longer constrained to minimal surfaces,
they are one (geodesic) representative of an equivariant family. 


