The geometry and topology of crystals

Vanessa Robins
Department of Applied Mathematics
Research School of Physics, ANU.
Supported by ARC Future Fellowship FT140100604

1. Brief history of crystals and their geometry
2. Crystalline symmetries - lattices
3. Periodic nets
4. Crystalline symmetries - the space groups
5. Orbifolds - geometry and topology of the space groups
6. Pattern enumeration within orbifolds

- Delaney Dress combinatorial tiling theory
- RCSR and EPINET databases
- ... and the current frontier

Acknowledgments

- ANU-based collaborations: Stephen Hyde, Stuart Ramsden, Olaf DelgadoFriedrichs, Gerd Schroeder-Turk, Myfanwy Evans, Toen Castle, Lilliana DiCampo, Jacob Kirkensgaard, Martin Cramer-Pederson
- Other input from: Michael O’Keeffe, Shicheng Wang
- Mathematical background: Coxeter, Thurston, Conway, Dress, Sunada

...crystals are naturally occurring geometric forms

Note the dodecahedral and icosahedral forms are not truly regular

Many chemically pure solids are crystals or made up of small crystals: e.g. salts, metals, minerals.
X-ray diffraction allows us to deduce the locations of atoms in the crystal. (Laue, Braggs (1912)).
Knowing the atomic arrangements in solids and molecules enables us to understand how structure influences properties and then use this to engineer new materials.
e.g. to predict thermal, electrical, magnetic properties of crystals.

how did scientists deduce the internal structure?

Haüy's theory of crystal habit (1784)

Haüy showed how regular stacking of "integral molecules" could explain the observed law of the constancy of interfacial angles [Stensen (1660s), de l'Isle (1770s)] and led him to derive the law of rational indices.

International Union of Crystallography definition

A material is a crystal if it has an essentially sharp diffraction pattern.
"essentially sharp" means isolated local maxima of intensity
Note: this definition is made to include quasicrystal diffraction patterns.

The locations and intensities of the spots give the magnitudes of the Fourier series coefficients of the electron density in the crystal, $\rho(r)$.
related to the wavelength and lattice plane spacing

$$
\begin{gathered}
I\left(k-k^{\prime}\right) \propto\left|\int \rho(r) e^{i\left(k-k^{\prime}\right) \cdot r} d V\right|^{2} \\
\rho(r)=\sum_{G} \rho_{G} e^{i G \cdot r} \quad I(G) \propto\left|\rho_{G}\right|^{2}
\end{gathered}
$$

> Each spot above is due to a different incident wavelength and lattice plane.

... but the Fourier coefficients are complex numbers, so this is not quite enough information to invert the FT

Assume: $\quad \rho(r)=\sum_{G} \rho_{G} e^{i G \cdot r} \quad$ Measure: $\quad I(G) \propto\left|\rho_{G}\right|^{2}$
Solving a crystal structure, i.e., finding the electron density $\rho(r)$, therefore requires more than just the intensities of the peaks.
Typically, simulated diffraction patterns from hypothesized models are tested against the observed pattern.

Mathematical challenge:

What crystalline structures are possible?
(within some physically meaningful class)
We assume structures that have genuine translational symmetry.
i.e., they have infinite extent, no defects, no quasicrystals.

What are some physically/ chemically meaningful classes?

1. Lattices (point patterns generated by translations)
2. Symmetric packings of spherical or ellipsoidal 'grains'
3. Symmetric arrangements of coordination polyhedra, other extended figures
4. Periodic geometric graphs with high symmetry
5. Periodic (minimal) surfaces
6. Decorations of periodic surfaces

Close-packed hexagonal structure CPH

Zinc, magnesium, cadmium

Face-centred cubic structure FCC

Body-centred cubic structure BCC

Chromium, tungsten iron

$s p^{3}$-QM hybrid covalent bond
increasingly complex framework materials

zeolite LTA

metal organic frameworks

Inclined hcb, DOC 3/3/3/3

multicomponent entangled MOFs

Highly symmetric, triply-periodic minimal surfaces form e.g. as self-assembled bilayers of lipids called "cubic phases". see e.g. ST Hyde et al "The Language of Shape" (1996)

Im3m

Fd3m

The multiple faces of self-assembled lipidic systems G Tresset PMC Biophys (2009)

On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals RW Corkery, EC Tyrode Interface Focus (2017)

Mathematical challenge: What crystalline structures are possible assuming structures that have genuine translational symmetry?

Lattices, Point groups, Space groups (in R^{3})

Isometries of R^{3} are translation, rotation about a fixed line, screw rotation, inversion in a point, roto-inversion, reflection in a mirror plane, glide translation.

Lattice: given three linearly independent vectors in $\mathrm{R}^{3}, \mathbf{a}, \mathbf{b}, \mathbf{c}$, a lattice is the set of all points $h \mathbf{a}+k \mathbf{b}+l \mathbf{c}$ where h, k, l are integers.
There are 14 different symmetry classes of lattice. (Bravais, 1848)

Mathematical challenge: What crystalline structures are possible assuming structures that have genuine translational symmetry?

Lattices, Point groups, Space groups (in R^{3})

Isometries of R^{3} are translation, rotation about a fixed line, screw rotation, inversion in a point, roto-inversion, reflection in a mirror plane, glide translation.

Lattice: given three linearly independent vectors in $\mathrm{R}^{3}, \mathbf{a}, \mathrm{~b}, \mathbf{c}$, a lattice is the set of all points $h \mathbf{a}+k \mathbf{b}+l \mathbf{c}$ where h, k, l are integers.
There are 14 different symmetry classes of lattice. (Bravais, 1848)
Point group: A symmetry group that fixes at least one point.
There are 32 point groups compatible with translational symmetry (Hessel, 1830)
Rotations must be of order $2,3,4$ or 6 .
This result is derived by considering the Wigner-Seitz cells because they can be shown to have the full symmetry of the lattice.

Space group: A discrete group of isometries of R^{3} that contains a lattice subgroup.
There are 230 space groups (Federov, Schoenflies, 1890-91)
How can we best understand the space groups?

The Regular Polyhedra - most symmetric finite objects

Polyhedro	$\stackrel{\rightharpoonup}{*}$	Vertices	Edges *	Faces ${ }^{-}$	Schläfli symbol $\stackrel{\text { v }}{ }$	Vertex configuration $\stackrel{\rightharpoonup}{*}$	point group
tetrahedron		4	6	4	$\{3,3\}$	3.3.3	*233
cube		8	12	6	\{4, 3\}	4.4.4	*234
octahedron		6	12	8	$\{3,4\}$	3.3.3.3	*234
dodecahedron		20	30	12	$\{5,3\}$	5.5.5	*235
icosahedron		12	30	20	$\{3,5\}$	3.3.3.3.3	*235

other point groups come in families based on *NN, *22N

images from wikipedia

The Regular Nets - most symmetric periodic frameworks

What are the
highest-symmetry periodic nets?

Vertex figures are regular polygons or
polyhedra
All vertices related by symmetries of the net

Vertex site symmetry* is a symmetry of the net
see ODF, O'Keeffe, Yaghi (2003) Acta Cryst A.
http://rcsr.net/

srs

dia

bcu

srs-a

nbo

Fig. 5 The regular and quasiregular (fcu) nets in their normal and augmumted conformations.

Periodic surfaces are covered by the hyperbolic plane

See http://epinet.anu.edu.au
"The monster paper" Ramsden, Robins, Hyde Acta Cryst A (2009)

International Tables for Crystallography

http://it.iucr.org (definitive but paywalled) http://www.cryst.ehu.es (Bilbao crystallographic server, free)

Standard classification is by lattice type, centering, point group symmetry

```
e.g. P432 has a cubic lattice, primitive centering (no extra translations),
    point group is 432 (i.e. the octahedral group)
```

International tables list the
location of the origin, generators for the lattice order of the group modulo lattice translations one rep. for each symmetry operation (wrt crystallographic coordinates)
Wyckoff "special positions" (i.e. fixed points, lines, planes)
Asymmetric unit (i.e. a fundamental domain for the group)
The tables are "data heavy", not at all intuitive or easy to visualize without long term experience and memorization.

enter Orbifolds: a topological perspective on

geometric groups (Thurston, 1970s, after Satake, 1956)

2d topology warm-up

Symmetry group is G, translation lattice subgroup is $L \approx Z^{2}$
We're going to construct the quotient spaces: R^{2} / L and R^{2} / G

[^0]
the translational cell glues up into a torus
R^{2} / G
the asymmetric domain glues up into a sphere with four cone points.

2-orbifolds are compact 2D manifolds with a finite number of boundaries and marked cone points.

2D orbifolds of geometric groups are completely classified using the same techniques as the classification of 2-manifolds by their Euler characteristic.

Spherical 2-orbifolds have $K>0$
Euclidean one have K = 0
Hyperbolic 2-orbifolds haves $\mathrm{K}<0$

There are 17 crystallographic plane groups，＂wallpaper groups＂ identified up to isomorphism by their quotient spaces R^{2} / G

Class（Hyde，Ramsden，R．2014）	Orbifold（Conway 1992） symbol	Crystallographic symbol（Int．Tables Cryst）
coxeter	$\star 632$	p6m
	＊442	p4m
\checkmark	＊333 $\quad 7 \rightarrow+$	p3m1
stellate	$\begin{aligned} & \star 2^{4}(\star 2222) \\ & 632 \end{aligned}$	pmm
hat	442 D	p4
	333 ए ए	p3
	$2^{4}(2222) ~ \square \square$	p2
	$\begin{aligned} & 4 \star 2 \\ & 3 \star 3 \end{aligned}$	$\begin{aligned} & p 4 g \\ & p 31 m \end{aligned}$
	$2 \star 22$	cmm
	22＊	pmg
projective	$22 \times$ 里 必 必 州	pgg
	${ }_{0}^{\times \times}$－必 必 州 必	$\begin{gathered} p g \\ p 1 \end{gathered}$
möbius	州 州 州	cm

3d periodic patterns \leftrightarrow 3-torus

3-torus = solid cube with opposite faces glued together

Rotational symmetries of simple cubic structure

two types of 4-fold rotation axes

3-fold

three types of 2-fold rotns

Rotational symmetries of simple cubic structure

1. fundamental domain is $1 / 24^{\text {th }}$ of the cube

2. glue two tetrahedra along (mirrored) faces
this is the orbifold diagram
for space group P432
3. get a 3-sphere with internal singular lines and singular points

surfaces inside orbifolds

1. a sphere inside the 3 -orbifold is a 2-orbifold for a periodic surface

2. unfolded to a unit cell the surface has genus 3

3. The minimal surface version of this periodic surface is Schwarz's Primitive (P) surface

Riemann-Hurwitz Formula. $\Sigma_{g} \rightarrow \Sigma_{g^{\prime}}$ is a regular branched covering with transformation group G. Let $a_{1}, a_{2}, \cdots, a_{k}$ be the branched points in $\Sigma_{g^{\prime}}$ having indices $q_{1} \leq q_{2} \leq \cdots \leq q_{k}$. Then

2d orbifold: $\mathbf{2 4 2 4}$ surface genus: 7 bcu / nbo labyrinth IWP is min surf rep.
$|G|=24$
$g^{\prime}=0$
$q_{i}=$ cone pt orders

image credit: Stuart Ramsden

Riemann-Hurwitz Formula. $\Sigma_{g} \rightarrow \Sigma_{g^{\prime}}$ is a regular branched covering with transformation group G. Let $a_{1}, a_{2}, \cdots, a_{k}$ be the branched points in $\Sigma_{g^{\prime}}$ having indices $q_{1} \leq q_{2} \leq \cdots \leq q_{k}$. Then

$$
2-2 g=|G|\left(2-2 g^{\prime}-\sum_{i=1}^{k}\left(1-\frac{1}{q_{i}}\right)\right)
$$

$$
\begin{aligned}
& |\mathrm{G}|=24 \\
& g^{\prime}=0 \\
& q_{i}=\text { cone pt orders }
\end{aligned}
$$

image credit: Ken Brakke
2d orbifold: 2434 surface genus: 9
ftw / ftw labyrinth
Neovius $C(P)$ min surf

William Dunbar's 3 -orbifold diagrams of the 12 orientation preserving cubic space groups. 11 diagrams show singular lines in a 3-sphere. One diagram has RP3 as its underlying space. "Geometric Orbifolds" Revisita Matematica (1988)

$[12,3]$ व

[$\mathrm{P} 4,32]$

[P_{2} 232] a

[[4, 32] ล

[P23] a

[F4,32] D

[1432] a

(underlying space $=\mathbb{R} \mathrm{P}^{3}=3$-ball w/antipodal: $b d y \rightarrow b d y$)
systematic study of these diagrams leads us to find all highest-symmetry surfaces in the 3-torus: arxiv:1603.08077 (Bai, Robins, Wang, Wang)

$14_{1} 32$

h axis from a to c 2d orbifold: 2223 surface genus: 3
srs(+) / srs(-) labyrinths Gyroid is min surf rep.

h axis from a to d 2d orbifold: 2223 surface genus: 3

27 srs(+) labyrinth !! NO min surf rep because the genus-3 surface is knotted in the 3-torus.

Big thanks to Stu Ramsden for his Space Group Symmetry package in Houdini.

Next steps:

Describe the high-symmetry, low-genus surfaces in these 12 space groups. Every single one accommodates a structure related to P, D or Gyroid surface, sometimes higher-genus, lower symmetry or knotted versions.

Extend to all 35 cubic space groups
(since each has a single orientation-preserving subgroup)

This gives us ways to map 2d hyperbolic geometry into 3d space groups, see, for example: Hyde, Robins, Ramsden (2014) Acta Cryst A p. 319
and potentially to map (some) 3d periodic objects to 2d hyperbolic patterns.

Implications for describing self-assembled structures?

Focus on orientation-preserving space groups means it is possible to
"see" the structure of the 3-orbifold, clear definition of bi-continuous structure as two sides of the surface.

No longer constrained to minimal surfaces, they are one (geodesic) representative of an equivariant family.

[^0]: image credit: Martin von Gagern - http://www.morenaments.de/gallery/exampleDiagrams/

