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Definition of matrix representation

The algebraic pattern of su(2) appears in a number of di�erent
contexts. Although we started with 2× 2 hermitean traceless
matrices, this is not essential to its structure.

Representation theory studies how a group can be expressed
using matrices from GL(n,C). 〈why do we work over C?〉

A representation of dimension n de�nes a matrix D(g) ∈ GL(n,C)
for every g ∈ G so that the mapping D : G→ GL(n,C) is a
homomorphism. In particular:
· Identity: D(I) = In.
· Inverses: D(g−1) = [D(g)]−1.
· Products: D(g ∗ h) = D(g)D(h).

Two representations, Da,Db are equivalent if there is a single
matrix S ∈ GL(n,C) so that S−1Da(g)S = Db(g) for all g ∈ G.
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Terminology of matrix representations

· A representation is faithful if D(g) = In if and only if g = I ∈ G.

· The trivial representation is the map that sends every element to
the identity: D(g) = I.

· A subspace W ⊂ Cn is invariant if D(g)~w ∈ W for all g ∈ G and
~w ∈ W. 〈how do you �nd invariant subspaces?〉

· An irreducible representation is one with no non-trivial invariant
subspaces.

· A reducible representation is equivalent to one in a �xed

block-triangular form: Dn+m(g) =
(
Dn(g) Rnm(g)
0 Dm(g)

)
.

The �rst n-coordinates of Cn+m are an invariant subspace for Dn+m.
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Terminology of matrix representations

· A completely reducible representation is equivalent to a
block-diagonal form:

Dn(g) =


Dn1(g) 0 · · · 0
0 Dn2(g) · · · 0
...

...
...

0 0 · · · Dnr(g)


where each Dnk is an irreducible representation for the group G.
The subscripts here refer to dimension so

∑
k nk = n. This means

the coordinates spanning each block form distinct invariant
subspaces.

· A completely reducible representation is equivalent to the direct
sum of the irreducible representations in its diagonal blocks,
written as Dn = Dn1 ⊕ Dn2 ⊕ · · ·Dnr .
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Reps of Lie groups and algebras

Suppose D : G→ GL(n,C) is a representation of a matrix Lie group G.
Then there is a unique representation D′ : g→ gl(n,C) such that
D(eiT) = eiD′(T). We compute D′(T) as D′(T) = d

dt D(e
itT)
∣∣
t=0.

This de�nition ensures the matrices D(eiT) and D′(T) are expressed with
respect to the same basis for Cn.

Note that gl(n,C) is a vector space of matrices with matrix commutation as Lie bracket.
In general, a representation of a Lie algebra is a homomorphism that maps the Lie
bracket of g to matrix commutation in gl(n,C).

Suppose D′ : g→ gl(n,C) is a Lie algebra representation. Then setting
D(eiT) = eiD′(T) will give a representation of the connected and
simply-connected covering group G associated with the Lie algebra g.
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Reps of Lie groups and algebras

Given D′ : g→ gl(n,C) de�ne a representation of gC to be
D′C(X + iY) = D′(X) + iD′(Y). Conversely, every representation of
gC becomes a representation of g because g ⊂ gC.

The following theorems tell us that for certain cases a
�nite-dimensional representation can be built as the direct sum
of irreducible representations

If G is a compact matrix Lie group then every �nite dimensional
representation is completely reducible.

If G is a matrix Lie group and D is a �nite-dimensional unitary
representation, then it is completely reducible.
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Symmetries of a quantum Hamiltonian operator

Suppose that H is invariant with respect to a group of unitary
transformations T ∈ G: T†HT = H. T unitary implies [H, T] = 0.

Take an eigenfunction Hψ = Eψ. Then
H(Tψ) = (HT)ψ = (TH)ψ = T(Hψ) = TEψ = E(Tψ), meaning Tψ is
another eigenfunction for H with the same eigenvalue E.

Quantum operators are linear and their eigenfunctions span a Hilbert
space. Suppose the eigenfunctions with identical eigenvalue E span a
d-dimensional space with basis {ψ1, . . . , ψd}.

Linearity now tells us that for each a, Tψa =
∑

b tabψb.

The coe�cients tab form a d-dimensional matrix representation for G,
with the vector space having basis {ψ1, . . . , ψd}.
On this subspace, H acts as a multiple of the identity matrix Id.
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Schur’s lemma

Schur’s lemma takes many forms depending on context.

Lie group version
Let D : G→ GL(n,C) be an irreducible representation of a matrix
Lie group G. Suppose we have a ∈ G such that aga−1 = g for all
g ∈ G. Then D(a) = λIn for some λ ∈ C.

Lie algebra version
Let D′ : g→ gl(n,C) be an irreducible representation of Lie
algebra g. Suppose A ∈ gl(n,C), that matrices A and D′(T) are
given with respect to the same basis for Cn, and that
AD′(T) = D′(T)A. Then A = λIn for some λ ∈ C.

This points to the connection physicists exploit between a Hamiltonian
operator H, its symmetry group, irreducible representations of that
group, and the eigenfunctions for H.
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Irreducible reps for su(2)C = sl(2,C)

Constructing the irreducible representations for su(2)C follows the
same procedure as �nding the eigenvalues and their multiplicity for
the quantum orbital angular momentum operators.

1. The generators and commutators are Ja, [Ja, Jb] = iεabcJc, with
a,b, c ∈ {x, y, z}.

2. De�ne C = (Jx)2+(Jy)2+(Jz)2 as a Casimir element, and J± = Jx± iJy.

3. Assume Dn : su(2)C → gl(n,C) is irreducible and choose a basis for
Cn to be the eigenvectors of Jz. C commutes with all Ja so C = λIn
for some λ that depends on the dimension n.

4. Use the raising and lowering operators to �nd that the eigenvalues
of Jz must be j, j− 1, . . . ,−j+ 1,−j, that λ = j(j+ 1) and that
j = (n− 1)/2 = 0, 12 , 1,

3
2 , . . ..

5. We can use this information to write out the n-dimensional
matrices for Ja in full for any dimension n.
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Irreducible reps for su(2)C = sl(2,C)

j = 0,n = 1
This is the trivial representation. Jx = Jy = Jz = 0.

j = 1
2 ,n = 2

This is the standard su(2) representation in terms of the Pauli matrices.
Ja = 1

2σa.

j = 1,n = 3
This is equivalent to the standard representation for so(3), but with a
basis (Cartesian not “spherical”!) that makes Jz diagonal.

Jx = 1√
2

0 −i 0
i 0 i
0 −i 0

 Jy = 1√
2

 0 −1 0
−1 0 1
0 1 0

 Jz =

1 0 0
0 0 0
0 0 −1


9 20



Representations of SU(2)

· Since SU(2) is simply connected we know representations for
it are in one-to-one correspondence with those of su(2)C.
· Since SU(2) is compact we know all its �nite-dimensional
representations are completely reducible to a direct sum of
irreducible ones. This also holds for its (complexi�ed) Lie
algebra.
· [Theorem] Any two irreducible representations of su(2)C of
the same dimensions are equivalent.
· It follows that any representation of SU(2) is equivalent to
the direct sum of some combination of irreducible
representations constructed as described on the previous
slide.
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Representations of SO(3)

· SO(3) is NOT simply connected and only the su(2)C
representations with integer j = 0, 1, 2, . . . (odd dimensional
reps) are true representations of SO(3).
· SO(3) is compact so we still have that all its
�nite-dimensional representations are completely reducible
to a direct sum of irreducible ones.
· 〈Show that the j = 1/2 representation of su(2)C is not a representation of SO(3). 〉

· 〈Show that the j = 1 representation of su(2)C is not a faithful representation of
SU(2).〉
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Representations of the Lorentz group

Recall that the complexi�ed Lorentz Lie algebra so+(1, 3)C splits
into the direct sum su(2)C ⊕ su(2)C = sl(2;C)⊕ sl(2;C).
There are six generators Na± = 1

2(J
a ± iKa) with commutation

relations

[Na+,Nb+] = iεabcNc+, [Na−,Nb−] = iεabcNc−, [Na+,Nb−] = 0

Every X ∈ so+(1, 3)C can be written uniquely as X = X+ + X− with
X± = taNa±. The associated Lie group∗ elements satisfy

eiX = eiX++iX− = (eiX+)(eiX−) because [Na+,Nb−] = 0.

If X+ and X− did not commute, we would have to invoke the
Baker-Campbell-Hausdor� formula here.

∗ i.e., the simply connected covering group which happens to be isomorphic to SL(2,C).
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Representations of the Lorentz group

We want to combine two representations for su(2)C into one for
so+(1, 3)C. Even though the algebras are related by a direct sum, the
combination of representations is achieved using the tensor product of
vector spaces.
A tensor product representation Dm ⊗ Dn for the group acts on the
vector space Cm ⊗ Cn of dimension mn as

(Dm ⊗ Dn)(eiX)(u⊗ v) = eiD
′
m(X+)(u)⊗ eiD

′
n(X−)(v)

At the Lie algebra level this looks like a product rule:

(Dm ⊗ Dn)′(X)(u⊗ v) = (D′m(X+)⊗ In)(u⊗ v) + (Im ⊗ D′n(X−))(u⊗ v)
= D′m(X+)(u)⊗ v + u⊗ D′n(X−)(v)
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Representations of the Lorentz group

For the Lorentz group we �nd that

j = 0, j = 0
This is again the trivial representation. The vector space of the
representation consists of scalars.

j = 1
2 , j = 0

(D2 ⊗ D1)′(X) = D′2(X+)⊗ I1 + (I2 ⊗ D′1(X−)) ' D′2(X+). This becomes the
left-chiral spinor representation.

j = 0, j = 1
2

(D1 ⊗ D2)′(X) = D′1(X+)⊗ I2 + (I1 ⊗ D′2(X−)) ' D′2(X−). This becomes the
right-chiral spinor representation.
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Representations of the Lorentz group

j = 1
2 , j =

1
2

(D2 ⊗ D2)′(X) = D′2(X+)⊗ I2 + (I2 ⊗ D′2(X−)). The vector space is C2 ⊗ C2

but this group representation acts in a way that is isomorphic to the
standard 4-vector representation.

A reducible representation
The Dirac spinor representation is the direct sum of the left and
right-chiral spinor representations:

D′D(X) = (D2 ⊗ D1)′(X)⊕ (D1 ⊗ D2)′(X) ' D′2(X+)⊕ D′2(X−)

These are just the simplest low-dimensional representations. Many
more also have relevance in physical contexts.
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Another way to combine representations

· Given two irreducible representations Dm,Dn for a Lie group G, we
use a tensor product to obtain an mn-dimensional representation
Dmn(g) = Dm(g)⊗ Dn(g).

· At the Lie algebra level we have product rule behaviour again with
D′mn(X) = D′m(X)⊗ In + Im ⊗ D′n(X).

· This new representation will, in general, be reducible, and if G is
compact, or D is unitary, we know that it is completely reducible
and would like to �nd its irreducible parts.

· This procedure is “�nding the Clebsch-Gordan coe�cients" or
“multiplying ladders”. It amounts to �nding dimensions of the
distinct invariant subspaces Vnr ⊂ Cmn with

∑
nr = mn.
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Clebsch-Gordan for SU(2)

Given two irreducible representations for SU(2) with j = (m− 1)/2 and
k = (n− 1)/2, assume j ≥ k. The tensor product space for the
representation Dm ⊗ Dn decomposes as

Cm ⊗ Cn ∼ Cmn = Vj+k ⊕ Vj+k−1 ⊕ · · · ⊕ Vj−k

where the dimension of Vnr = 2nr + 1.
The representation on each Vnr is the unique irreducible representation
for SU(2) of that dimension.

〈check the vector space dimensions for the decomposition add up appropriately for
some choice of j, k.〉
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A brief outline of representations for SU(3)

SU(3) is the group of unitary 3× 3 matrices with det(U) = 1. It is compact, connected and
simply connected, with an 8-dimensional manifold as its parameter space. The
Gell-Mann matrices given in Lecture 2 are one representation for its Lie algebra.
Properties of su(3)C = sl(3,C) exemplify those of a large class called
complex semisimple Lie algebras which have been completely
characterised.
To explain requires even more terminology...

a subspace V ⊂ g is an ideal if [X, Y] ∈ V for all X ∈ g and Y ∈ V.
a Lie algebra g is simple if dim g ≥ 2 and it has no non-trivial ideals.
a semisimple Lie algebra is the direct sum of simple Lie algebras.

adjoint representation
Given a basis {T1, . . . , Td} for a d-dimensional Lie algebra and the
structure constants [Ta, Tb] = if abcTc, the adjoint representation
ad : g→ gl(d,C) is de�ned by ad(Ta) = (xbc) = (−if abc)
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A brief outline of representations for SU(3)

The process of �nding the irreducible representations uses the
following concepts

1. A Cartan subalgebra h ⊂ g de�ned so that h is a maximal abelian
subalgebra such that ad restricted to h is completely reducible.
This means the elements of h can be simultaneously diagonalised.
Their eigenvectors are used as the basis for the representation.

2. (Theorem) Any two Cartan subalgebras are isomorphic via an
automorphism of g.

3. The rank of g is the dimension of a Cartan subalgebra.
For su(2), the Cartan subalgebra is spanned by Jz and is of rank 1.
For su(3), it is T3 and T8, the elements with non-zero entries on the
diagonal, so su(3) has rank 2.

4. A root vector is an eigenvector for the adjoint representation of
the Cartan subalgebra and the eigenvalues are the roots. These act
as the raising and lowering operators did to map the Cartan
eigenvectors amongst themselves in any representation.
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A brief outline of representations for SU(3)

The process of �nding the irreducible representations uses the
following concepts

5. In any representation of g, a set of simultaneous eigenvectors and
eigenvalues for the matrices D′(H), H ∈ h are called weights and
weight vectors.

6. (Theorem) Each irreducible representation of g has a unique
“highest” weight and any two irreducible reps with the same
highest weight are equivalent.
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