GROUP THEORY:

A BRIEF INTRODUCTION TO SOME ELEMENTS THEREOF

Vanessa Robins, ANU
Lectures for the Canberra International Physics Summer School "Fields and Particles"

JANUARY 2023

LECTURE 3: REPRESENTATIONS OF LIE GROUPS AND ALGEBRAS

DEFINITION OF MATRIX REPRESENTATION

The algebraic pattern of $\mathfrak{s u (2)}$ appears in a number of different contexts. Although we started with 2×2 hermitean traceless matrices, this is not essential to its structure.

Representation theory studies how a group can be expressed using matrices from $G L(n, \mathbb{C})$. 〈why do we work over \mathbb{C} ? $\}$

DEFINITION OF MATRIX REPRESENTATION

The algebraic pattern of $\mathfrak{s u (2)}$ appears in a number of different contexts. Although we started with 2×2 hermitean traceless matrices, this is not essential to its structure.

Representation theory studies how a group can be expressed using matrices from $G L(n, \mathbb{C})$. 〈why do we work over \mathbb{C} ?)

A representation of dimension n defines a matrix $D(g) \in G L(n, \mathbb{C})$ for every $g \in G$ so that the mapping $D: G \rightarrow G L(n, \mathbb{C})$ is a homomorphism. In particular:

- Identity: $D(I)=I_{n}$.
- Inverses: $D\left(g^{-1}\right)=[D(g)]^{-1}$.
- Products: $D(g * h)=D(g) D(h)$.

DEFINITION OF MATRIX REPRESENTATION

The algebraic pattern of $\mathfrak{s u (2)}$ appears in a number of different contexts. Although we started with 2×2 hermitean traceless matrices, this is not essential to its structure.

Representation theory studies how a group can be expressed using matrices from $G L(n, \mathbb{C})$. 〈why do we work over \mathbb{C} ?)

A representation of dimension n defines a matrix $D(g) \in G L(n, \mathbb{C})$ for every $g \in G$ so that the mapping $D: G \rightarrow G L(n, \mathbb{C})$ is a homomorphism. In particular:

- Identity: $D(I)=I_{n}$.
- Inverses: $D\left(g^{-1}\right)=[D(g)]^{-1}$.
- Products: $D(g * h)=D(g) D(h)$.

Two representations, D_{a}, D_{b} are equivalent if there is a single matrix $S \in G L(n, \mathbb{C})$ so that $S^{-1} D_{a}(g) S=D_{b}(g)$ for all $g \in G$.

Terminology of matrix representations

- A representation is faithful if $D(g)=I_{n}$ if and only if $g=I \in G$.
- The trivial representation is the map that sends every element to the identity: $D(g)=I$.
- A subspace $W \subset \mathbb{C}^{n}$ is invariant if $D(g) \vec{W} \in W$ for all $g \in G$ and $\vec{w} \in W$. 〈how do you find invariant subspaces?)
- An irreducible representation is one with no non-trivial invariant subspaces.
- A reducible representation is equivalent to one in a fixed block-triangular form: $D_{n+m}(g)=\left(\begin{array}{cc}D_{n}(g) & R_{n m}(g) \\ 0 & D_{m}(g)\end{array}\right)$.
The first n-coordinates of \mathbb{C}^{n+m} are an invariant subspace for D_{n+m}.

Terminology of matrix representations

- A completely reducible representation is equivalent to a block-diagonal form:

$$
D_{n}(g)=\left(\begin{array}{cccc}
D_{n_{1}}(g) & 0 & \cdots & 0 \\
0 & D_{n_{2}}(g) & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & D_{n_{r}}(g)
\end{array}\right)
$$

where each $D_{n_{k}}$ is an irreducible representation for the group G. The subscripts here refer to dimension so $\sum_{k} n_{k}=n$. This means the coordinates spanning each block form distinct invariant subspaces.

- A completely reducible representation is equivalent to the direct sum of the irreducible representations in its diagonal blocks, written as $D_{n}=D_{n_{1}} \oplus D_{n_{2}} \oplus \cdots D_{n_{r}}$.

Reps of Lie groups and algebras

Suppose $D: G \rightarrow G L(n, \mathbb{C})$ is a representation of a matrix Lie group G. Then there is a unique representation $D^{\prime}: \mathfrak{g} \rightarrow \mathfrak{g l}(n, \mathbb{C})$ such that $D\left(e^{i T}\right)=e^{i D^{\prime}(T)}$. We compute $D^{\prime}(T)$ as $D^{\prime}(T)=\left.\frac{d}{d t} D\left(e^{i t T}\right)\right|_{t=0}$.

This definition ensures the matrices $D\left(e^{i T}\right)$ and $D^{\prime}(T)$ are expressed with respect to the same basis for \mathbb{C}^{n}.

Note that $\mathfrak{g l}(n, \mathbb{C})$ is a vector space of matrices with matrix commutation as Lie bracket. In general, a representation of a Lie algebra is a homomorphism that maps the Lie bracket of \mathfrak{g} to matrix commutation in $\mathfrak{g l}(n, \mathbb{C})$.

Suppose $D^{\prime}: \mathfrak{g} \rightarrow \mathfrak{g l}(n, \mathbb{C})$ is a Lie algebra representation. Then setting $D\left(e^{i T}\right)=e^{i D^{\prime}(T)}$ will give a representation of the connected and simply-connected covering group G associated with the Lie algebra \mathfrak{g}.

Reps of Lie groups and algebras

Given $D^{\prime}: \mathfrak{g} \rightarrow \mathfrak{g l}(n, \mathbb{C})$ define a representation of $\mathfrak{g}_{\mathbb{C}}$ to be $D_{\mathbb{C}}^{\prime}(X+i Y)=D^{\prime}(X)+i D^{\prime}(Y)$. Conversely, every representation of $\mathfrak{g}_{\mathbb{C}}$ becomes a representation of \mathfrak{g} because $\mathfrak{g} \subset \mathfrak{g}_{\mathbb{C}}$.

The following theorems tell us that for certain cases a finite-dimensional representation can be built as the direct sum of irreducible representations

If G is a compact matrix Lie group then every finite dimensional representation is completely reducible.

If G is a matrix Lie group and D is a finite-dimensional unitary representation, then it is completely reducible.

SYMMETRIES OF A QUANTUM HAMILTONIAN OPERATOR

Suppose that H is invariant with respect to a group of unitary transformations $T \in G: T^{\dagger} H T=H . T$ unitary implies $[H, T]=0$.

Take an eigenfunction $H \psi=E \psi$. Then
$H(T \psi)=(H T) \psi=(T H) \psi=T(H \psi)=T E \psi=E(T \psi)$, meaning $T \psi$ is another eigenfunction for H with the same eigenvalue E.

SYMMETRIES OF A QUANTUM HAMILTONIAN OPERATOR

Suppose that H is invariant with respect to a group of unitary transformations $T \in G: T^{\dagger} H T=H . T$ unitary implies $[H, T]=0$.

Take an eigenfunction $H \psi=E \psi$. Then
$H(T \psi)=(H T) \psi=(T H) \psi=T(H \psi)=T E \psi=E(T \psi)$, meaning $T \psi$ is another eigenfunction for H with the same eigenvalue E.

Quantum operators are linear and their eigenfunctions span a Hilbert space. Suppose the eigenfunctions with identical eigenvalue E span a d-dimensional space with basis $\left\{\psi^{1}, \ldots, \psi^{d}\right\}$.

Linearity now tells us that for each $a, T \psi^{a}=\sum_{b} t^{a b} \psi^{b}$.
The coefficients $t^{a b}$ form a d-dimensional matrix representation for G, with the vector space having basis $\left\{\psi^{1}, \ldots, \psi^{d}\right\}$. On this subspace, H acts as a multiple of the identity matrix I_{d}.

SCHUR'S LEMMA

Schur's lemma takes many forms depending on context.

Lie group version

Let $D: G \rightarrow G L(n, \mathbb{C})$ be an irreducible representation of a matrix Lie group G. Suppose we have $a \in G$ such that $a g a^{-1}=g$ for all $g \in G$. Then $D(a)=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$.

Lie algebra version

Let $D^{\prime}: \mathfrak{g} \rightarrow \mathfrak{g l}(n, \mathbb{C})$ be an irreducible representation of Lie algebra \mathfrak{g}. Suppose $A \in \mathfrak{g l}(n, \mathbb{C})$, that matrices A and $D^{\prime}(T)$ are given with respect to the same basis for \mathbb{C}^{n}, and that $A D^{\prime}(T)=D^{\prime}(T) A$. Then $A=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$.

SCHUR'S LEMMA

Schur's lemma takes many forms depending on context.

Lie group version

Let $D: G \rightarrow G L(n, \mathbb{C})$ be an irreducible representation of a matrix Lie group G. Suppose we have $a \in G$ such that $a g a^{-1}=g$ for all $g \in G$. Then $D(a)=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$.

Lie algebra version

Let $D^{\prime}: \mathfrak{g} \rightarrow \mathfrak{g l}(n, \mathbb{C})$ be an irreducible representation of Lie algebra \mathfrak{g}. Suppose $A \in \mathfrak{g l}(n, \mathbb{C})$, that matrices A and $D^{\prime}(T)$ are given with respect to the same basis for \mathbb{C}^{n}, and that $A D^{\prime}(T)=D^{\prime}(T) A$. Then $A=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$.

This points to the connection physicists exploit between a Hamiltonian operator H, its symmetry group, irreducible representations of that group, and the eigenfunctions for H.

IRREDUCIBLE REPS FOR $\mathfrak{s u}(2)_{\mathbb{C}}=\mathfrak{s l}(2, \mathbb{C})$

Constructing the irreducible representations for $\mathfrak{s u}(2)_{\mathbb{C}}$ follows the same procedure as finding the eigenvalues and their multiplicity for the quantum orbital angular momentum operators.

1. The generators and commutators are $J^{a},\left[J^{a}, J^{b}\right]=i \epsilon^{a b c} J^{c}$, with $a, b, c \in\{x, y, z\}$.
2. Define $C=\left(J^{x}\right)^{2}+\left(J^{y}\right)^{2}+\left(J^{z}\right)^{2}$ as a Casimir element, and $J^{ \pm}=J^{x} \pm i J^{y}$.
3. Assume $D_{n}: \mathfrak{s u}(2)_{\mathbb{C}} \rightarrow \mathfrak{g l}(n, \mathbb{C})$ is irreducible and choose a basis for \mathbb{C}^{n} to be the eigenvectors of J^{z}. C commutes with all J^{a} so $C=\lambda I_{n}$ for some λ that depends on the dimension n.
4. Use the raising and lowering operators to find that the eigenvalues of J^{2} must be $j, j-1, \ldots,-j+1,-j$, that $\lambda=j(j+1)$ and that $j=(n-1) / 2=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$.
5. We can use this information to write out the n-dimensional matrices for J^{a} in full for any dimension n.

IRREDUCIBLE REPS FOR $\mathfrak{s u}(2) \mathbb{C}=\mathfrak{s l}(2, \mathbb{C})$

$j=0, n=1$
This is the trivial representation. $J^{x}=J^{y}=J^{z}=0$.
$j=\frac{1}{2}, n=2$
This is the standard $\mathfrak{s u}(2)$ representation in terms of the Pauli matrices. $J^{a}=\frac{1}{2} \sigma_{a}$.
$j=1, n=3$
This is equivalent to the standard representation for $\mathfrak{s o}(3)$, but with a basis (Cartesian not "spherical"!) that makes J ${ }^{z}$ diagonal.

$$
J^{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & i \\
0 & -i & 0
\end{array}\right) \quad J^{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad J^{z}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Representations of SU(2)

- Since $\operatorname{SU}(2)$ is simply connected we know representations for it are in one-to-one correspondence with those of $\mathfrak{s u}(2)_{\mathbb{C}}$.
- Since $\operatorname{SU}(2)$ is compact we know all its finite-dimensional representations are completely reducible to a direct sum of irreducible ones. This also holds for its (complexified) Lie algebra.
- [Theorem] Any two irreducible representations of $\mathfrak{s u}(2)_{\mathbb{C}}$ of the same dimensions are equivalent.
- It follows that any representation of $S U(2)$ is equivalent to the direct sum of some combination of irreducible representations constructed as described on the previous slide.

Representations of SO（3）

－ $\mathrm{SO}(3)$ is NOT simply connected and only the $\mathfrak{s u}(2)_{\mathbb{C}}$ representations with integer $j=0,1,2, \ldots$（odd dimensional reps）are true representations of $S O(3)$ ．
－$S O(3)$ is compact so we still have that all its finite－dimensional representations are completely reducible to a direct sum of irreducible ones．

- 〈Show that the $j=1 / 2$ representation of $\mathfrak{s u}(2)_{\mathbb{C}}$ is not a representation of $S O(3)$ ．〉
- 〈Show that the $j=1$ representation of $\mathfrak{s u}(2)_{\mathbb{C}}$ is not a faithful representation of SU（2）．）

Representations of the Lorentz group

Recall that the complexified Lorentz Lie algebra $\mathfrak{s o}^{+}(1,3) \mathbb{C}$ splits into the direct sum $\mathfrak{s u}(2)_{\mathbb{C}} \oplus \mathfrak{s u}(2)_{\mathbb{C}}=\mathfrak{s l}(2 ; \mathbb{C}) \oplus \mathfrak{s l}(2 ; \mathbb{C})$.
There are six generators $N_{ \pm}^{a}=\frac{1}{2}\left(J^{a} \pm i K^{a}\right)$ with commutation relations

$$
\left[N_{+}^{a}, N_{+}^{b}\right]=i \epsilon^{a b c} N_{+}^{c}, \quad\left[N_{-}^{a}, N_{-}^{b}\right]=i \epsilon^{a b c} N_{-}^{c}, \quad\left[N_{+}^{a}, N_{-}^{b}\right]=0
$$

Every $X \in \mathfrak{5 0}^{+}(1,3)_{\mathbb{C}}$ can be written uniquely as $X=X_{+}+X_{-}$with $X_{ \pm}=t^{a} N_{ \pm}^{a}$. The associated Lie group* elements satisfy

$$
e^{i X}=e^{i X_{+}+i X_{-}}=\left(e^{i X_{+}}\right)\left(e^{i X_{-}}\right) \text {because }\left[N_{+}^{a}, N_{-}^{b}\right]=0 \text {. }
$$

If X_{+}and X_{-}did not commute, we would have to invoke the Baker-Campbell-Hausdorff formula here.

* i.e., the simply connected covering group which happens to be isomorphic to $\operatorname{SL}(2, \mathbb{C})$.

Representations of the Lorentz group

We want to combine two representations for $\mathfrak{s u}(2)_{\mathbb{C}}$ into one for $\mathfrak{s o}^{+}(1,3)_{\mathbb{C}}$. Even though the algebras are related by a direct sum, the combination of representations is achieved using the tensor product of vector spaces.
A tensor product representation $D_{m} \otimes D_{n}$ for the group acts on the vector space $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$ of dimension $m n$ as

$$
\left(D_{m} \otimes D_{n}\right)\left(e^{i X}\right)(u \otimes v)=e^{i D_{m}^{\prime}\left(X_{+}\right)}(u) \otimes e^{i D_{n}^{\prime}\left(X_{-}\right)}(v)
$$

At the Lie algebra level this looks like a product rule:

$$
\begin{aligned}
\left(D_{m} \otimes D_{n}\right)^{\prime}(X)(u \otimes v) & =\left(D_{m}^{\prime}\left(X_{+}\right) \otimes I_{n}\right)(u \otimes v)+\left(I_{m} \otimes D_{n}^{\prime}\left(X_{-}\right)\right)(u \otimes v) \\
& =D_{m}^{\prime}\left(X_{+}\right)(u) \otimes v+u \otimes D_{n}^{\prime}\left(X_{-}\right)(v)
\end{aligned}
$$

Representations of the Lorentz group

For the Lorentz group we find that
$j=0, j=0$
This is again the trivial representation. The vector space of the representation consists of scalars.

$$
j=\frac{1}{2}, j=0
$$

$\left(D_{2} \otimes D_{1}\right)^{\prime}(X)=D_{2}^{\prime}\left(X_{+}\right) \otimes I_{1}+\left(I_{2} \otimes D_{1}^{\prime}\left(X_{-}\right)\right) \simeq D_{2}^{\prime}\left(X_{+}\right)$. This becomes the left-chiral spinor representation.
$j=0, j=\frac{1}{2}$
$\left(D_{1} \otimes D_{2}\right)^{\prime}(X)=D_{1}^{\prime}\left(X_{+}\right) \otimes I_{2}+\left(I_{1} \otimes D_{2}^{\prime}\left(X_{-}\right)\right) \simeq D_{2}^{\prime}\left(X_{-}\right)$. This becomes the right-chiral spinor representation.

Representations of the Lorentz group

$$
j=\frac{1}{2}, j=\frac{1}{2}
$$

$\left(D_{2} \otimes D_{2}\right)^{\prime}(X)=D_{2}^{\prime}\left(X_{+}\right) \otimes I_{2}+\left(I_{2} \otimes D_{2}^{\prime}\left(X_{-}\right)\right)$. The vector space is $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ but this group representation acts in a way that is isomorphic to the standard 4-vector representation.

A reducible representation

The Dirac spinor representation is the direct sum of the left and right-chiral spinor representations:

$$
D_{\mathcal{D}}^{\prime}(X)=\left(D_{2} \otimes D_{1}\right)^{\prime}(X) \oplus\left(D_{1} \otimes D_{2}\right)^{\prime}(X) \simeq D_{2}^{\prime}\left(X_{+}\right) \oplus D_{2}^{\prime}\left(X_{-}\right)
$$

These are just the simplest low-dimensional representations. Many more also have relevance in physical contexts.

ANOTHER WAY TO COMBINE REPRESENTATIONS

- Given two irreducible representations D_{m}, D_{n} for a Lie group G, we use a tensor product to obtain an mn-dimensional representation $D_{m n}(g)=D_{m}(g) \otimes D_{n}(g)$.
- At the Lie algebra level we have product rule behaviour again with $D_{m n}^{\prime}(X)=D_{m}^{\prime}(X) \otimes I_{n}+I_{m} \otimes D_{n}^{\prime}(X)$.
- This new representation will, in general, be reducible, and if G is compact, or D is unitary, we know that it is completely reducible and would like to find its irreducible parts.
- This procedure is "finding the Clebsch-Gordan coefficients" or "multiplying ladders". It amounts to finding dimensions of the distinct invariant subspaces $V_{n_{r}} \subset \mathbb{C}^{m n}$ with $\sum n_{r}=m n$.

CLEBSCH-GORDAN FOR SU(2)

Given two irreducible representations for $\operatorname{SU}(2)$ with $j=(m-1) / 2$ and $k=(n-1) / 2$, assume $j \geq k$. The tensor product space for the representation $D_{m} \otimes D_{n}$ decomposes as

$$
\mathbb{C}^{m} \otimes \mathbb{C}^{n} \sim \mathbb{C}^{m n}=V_{j+k} \oplus V_{j+k-1} \oplus \cdots \oplus V_{j-k}
$$

where the dimension of $V_{n_{r}}=2 n_{r}+1$.
The representation on each $V_{n_{r}}$ is the unique irreducible representation for $S U(2)$ of that dimension.
<check the vector space dimensions for the decomposition add up appropriately for some choice of j, k.)

A BRIEF OUTLINE OF REPRESENTATIONS FOR SU(3)

$S U(3)$ is the group of unitary 3×3 matrices with $\operatorname{det}(U)=1$. It is compact, connected and simply connected, with an 8-dimensional manifold as its parameter space. The Gell-Mann matrices given in Lecture 2 are one representation for its Lie algebra. Properties of $\mathfrak{s u}(3)_{\mathbb{C}}=\mathfrak{s l}(3, \mathbb{C})$ exemplify those of a large class called complex semisimple Lie algebras which have been completely characterised.
To explain requires even more terminology...

- a subspace $V \subset \mathfrak{g}$ is an ideal if $[X, Y] \in V$ for all $X \in \mathfrak{g}$ and $Y \in V$.
- a Lie algebra \mathfrak{g} is simple if $\operatorname{dim} \mathfrak{g} \geq 2$ and it has no non-trivial ideals.
- a semisimple Lie algebra is the direct sum of simple Lie algebras.

adjoint representation

Given a basis $\left\{T^{1}, \ldots, T^{d}\right\}$ for a d-dimensional Lie algebra and the structure constants $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$, the adjoint representation ad $: \mathfrak{g} \rightarrow \mathfrak{g l}(d, \mathbb{C})$ is defined by ad $\left(T^{a}\right)=\left(x_{b c}\right)=\left(-i f^{a b c}\right)$

A BRIEF OUTLINE OF REPRESENTATIONS FOR SU(3)

The process of finding the irreducible representations uses the following concepts

1. A Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ defined so that \mathfrak{h} is a maximal abelian subalgebra such that ad restricted to \mathfrak{h} is completely reducible. This means the elements of \mathfrak{h} can be simultaneously diagonalised. Their eigenvectors are used as the basis for the representation.
2. (Theorem) Any two Cartan subalgebras are isomorphic via an automorphism of \mathfrak{g}.
3. The rank of \mathfrak{g} is the dimension of a Cartan subalgebra.

For $\mathfrak{s u}(2)$, the Cartan subalgebra is spanned by J^{2} and is of rank 1 . For $\mathfrak{s u}(3)$, it is T^{3} and T^{8}, the elements with non-zero entries on the diagonal, so su(3) has rank 2.

A bRIEF OUTLINE OF REPRESENTATIONS FOR SU(3)

The process of finding the irreducible representations uses the following concepts

1. A Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ defined so that \mathfrak{h} is a maximal abelian subalgebra such that ad restricted to \mathfrak{h} is completely reducible. This means the elements of \mathfrak{h} can be simultaneously diagonalised. Their eigenvectors are used as the basis for the representation.
2. (Theorem) Any two Cartan subalgebras are isomorphic via an automorphism of \mathfrak{g}.
3. The rank of \mathfrak{g} is the dimension of a Cartan subalgebra.

For $\mathfrak{s u}(2)$, the Cartan subalgebra is spanned by J^{2} and is of rank 1 . For $\mathfrak{s u}(3)$, it is T^{3} and T^{8}, the elements with non-zero entries on the diagonal, so $\mathfrak{s u}(3)$ has rank 2.
4. A root vector is an eigenvector for the adjoint representation of the Cartan subalgebra and the eigenvalues are the roots. These act as the raising and lowering operators did to map the Cartan eigenvectors amongst themselves in any representation.

A BRIEF OUTLINE OF REPRESENTATIONS FOR SU(3)

The process of finding the irreducible representations uses the following concepts
5. In any representation of \mathfrak{g}, a set of simultaneous eigenvectors and eigenvalues for the matrices $D^{\prime}(H), H \in \mathfrak{h}$ are called weights and weight vectors.
6. (Theorem) Each irreducible representation of \mathfrak{g} has a unique "highest" weight and any two irreducible reps with the same highest weight are equivalent.

Backup Slide

