GROUP THEORY:

A BRIEF INTRODUCTION TO SOME ELEMENTS THEREOF

Vanessa Robins, ANU
Lectures for the Canberra International Physics Summer School "Fields and Particles"

JANUARY 2023

Lecture 2: LIE ALGEBRAS AS LINEAR APPROXIMATION TO LIE GROUPS

SO(2): THE CANONICAL EXAMPLE

Anti-clockwise rotation of the plane about the origin by an angle θ is given by

$$
R(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

We can break this down into many tiny rotations:

$$
\begin{aligned}
R(\theta) & =\left[R\left(\frac{\theta}{N}\right)\right]^{N}=\left[\left(\begin{array}{cc}
\cos \frac{\theta}{N} & -\sin \frac{\theta}{N} \\
\sin \frac{\theta}{N} & \cos \frac{\theta}{N}
\end{array}\right)\right]^{N} \simeq\left[\left(\begin{array}{cc}
1 & -\frac{\theta}{N} \\
\frac{\theta}{N} & 1
\end{array}\right)\right]^{N} \\
& =\left[I+\frac{\theta}{N} X\right]^{N} \rightarrow e^{\theta X} \operatorname{as} N \rightarrow \infty \\
\text { with } X & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left.\frac{d R(\theta)}{d \theta}\right|_{\theta=0}
\end{aligned}
$$

SO(2): THE CANONICAL EXAMPLE

We have $R(\theta)=e^{\theta X} \quad$ with $X=\left.\frac{d R(\theta)}{d \theta}\right|_{\theta=0}$
This is even easier to express when working with $U(1)$

$$
R(\theta)=e^{i \theta} \quad \text { with } i=\left.\frac{d R(\theta)}{d \theta}\right|_{\theta=0}
$$

〈compute the matrix products $X^{2}, X^{3}, X^{4} \ldots$ with $i^{2}, i^{3}, i^{4}, \ldots$ what do you notice?〉

SO(2): THE CANONICAL EXAMPLE

We have $R(\theta)=e^{\theta X} \quad$ with $X=\left.\frac{d R(\theta)}{d \theta}\right|_{\theta=0}$
This is even easier to express when working with $U(1)$

$$
R(\theta)=e^{i \theta} \quad \text { with } i=\left.\frac{d R(\theta)}{d \theta}\right|_{\theta=0}
$$

〈compute the matrix products $X^{2}, X^{3}, X^{4} \ldots$ with $i^{2}, i^{3}, i^{4}, \ldots$ what do you notice?)

Matrix Lie group generators

Suppose $g(t)$ is a continuous path of matrices in G with $g(0)=I$. Then there is a generator, X, defined by

$$
X=\left.\frac{d g(t)}{d t}\right|_{t=0} \quad \text { and } g(t)=e^{t X} \text { for elements along this path. }
$$

The collection of all possible generators forms the Lie algebra \mathfrak{g}.

Algebraic definition of Lie algebra

A real coefficient Lie algebra \mathfrak{g} is an n-dimensional vector space with an operation called Lie product, or Lie bracket written $[a, b]$ satisfying

1. Closure. If $a, b \in \mathfrak{g}$ then $[a, b] \in \mathfrak{g}$.
2. Linearity. If $a, b, c \in \mathfrak{g}$, and $\alpha, \beta \in \mathbb{R}$, then

$$
[\alpha a+\beta b, c]=\alpha[a, c]+\beta[b, c] .
$$

3. Anti-symmetry. $[a, b]=-[b, a]$ for all $a, b \in \mathfrak{g}$.
4. Jacobi's identity. For $a, b, c \in \mathfrak{g}$,

$$
[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0
$$

If the elements are square matrices, the Lie product is the commutator: $[a, b]=a b-b a$.

Where did the commutator come from?

ORIGIN OF THE MATRIX COMMUTATOR

Multiplication in a matrix Lie group G requires that $e^{X} e^{Y}=g \in G$, with $g=e^{Z}$ for some other generator $Z \in \mathfrak{g}$. $»!!!$ Since X, Y are matrices $e^{X} e^{Y} \neq e^{X+Y}$!!!!
Rather, we have

The Baker-Campbell-Hausdorff formula

$$
\begin{aligned}
e^{X} e^{Y} & =\left(\sum_{n=0}^{\infty} \frac{X^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{Y^{n}}{n!}\right) \\
& =\exp \left[X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}([X,[X, Y]]+[Y,[Y, X]])+\cdots\right]
\end{aligned}
$$

So we see that Z is expressed as a sum of matrix commutators, and this the origin of the Lie bracket.
$\left\langle\right.$ alt., suppose $a=(I+A), b=(I+B)$ are close to $I \in G$, show $a b a^{-1} \simeq b+[A, B]$. .

LIE ALGEBRA OF SO(3)

For a fixed direction \vec{n}, the rotation $R(\vec{n}, \theta)$ is a continuous path of group elements with $R(\vec{n}, \mathrm{O})=I$. Set $X=\left.\frac{d R(\vec{n}, \theta)}{d \theta}\right|_{\theta=0}$, so that $R(\vec{n}, \theta)=e^{\theta X}$.

LIE ALGEBRA OF SO（3）

For a fixed direction \vec{n} ，the rotation $R(\vec{n}, \theta)$ is a continuous path of group elements with $R(\vec{n}, 0)=I$ ．Set $X=\left.\frac{d R(\vec{n}, \theta)}{d \theta}\right|_{\theta=0}$ ，so that $R(\vec{n}, \theta)=e^{\theta X}$ ．

The defining property of matrices in $\mathrm{SO}(3)$ is $R^{T}=R^{-1}$ ．For elements along the path generated by X ，this implies $e^{\theta X^{\top}}=e^{-\theta X}$ for all θ ，so that $X^{\top}=-X$ ．
A generator for $S O(3)$ must have the form $X=\left(\begin{array}{ccc}0 & x_{1} & x_{2} \\ -x_{1} & 0 & x_{3} \\ -x_{2} & -x_{1} & 0\end{array}\right)$
and we see that the vector space for the Lie algebra $\mathfrak{s o (3)}$ is 3×3 antisymmetric matrices．

〈compute the product of two matrices $X, Y \in \mathfrak{s o}(3)$ ．Is $X Y$ antisymmetric？〉
〈show that $[X, Y]=X Y-Y X$ is antisymmetric if X, Y are 〉

LIE ALGEBRA OF SO(3) (PHYSICS VERSION)

Before going any further, we must switch to physics notation, and introduce a factor of i into the matrix exponential definition. This converts the generators of $\mathrm{SO}(3)$ from being antisymmetric to being hermitean, and more closely related to quantum observables.

We now have $R(\vec{n}, \theta)=e^{i \theta \jmath}$ with $J=-i X \quad$ (show that $J^{\dagger}=$ I.) The standard physics basis for the Lie algebra $\mathfrak{s o}(3)$ is then

$$
J_{x}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad J_{y}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right) \quad J_{z}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

subscripts x, y, z refer to rotation about x, y, z-axes respectively.
Direct calculation shows $\left[J_{x}, J_{y}\right]=i J_{z},\left[J_{y}, J_{z}\right]=i J_{x},\left[J_{z}, J_{x}\right]=i J_{y}$.

BASIS, STRUCTURE CONSTANTS

The vector space structure of the Lie algebra greatly simplifies the amount of information required to describe it.

Let $\left\{T^{1}, \ldots, T^{m}\right\}$ be a basis for an m-dimensional real-coefficient Lie algebra. Every $T \in \mathfrak{g}$ is uniquely written as $T=\sum_{a=1}^{m} \theta^{a} T^{a}$, with $\theta^{a} \in \mathbb{R}$.

The commutators are $\left[T^{a}, T^{b}\right]=i \sum_{c=1}^{m} f^{a b c} T^{c}$, and the numbers $f^{a b c}$ are called the stucture constants.

- From now on we will omit the summation symbol and assume repeated indices are to be summed over.
- The factor of i is required above as we are using the physics definition $g=e^{i \theta^{a} T^{a}}$

LIE GROUP AND ALGEBRA OF SU(2)

A matrix $U \in S U(2)$ has $U^{\dagger} U=1$ and $\operatorname{det} U=1$.
Suppose $U=e^{i H}$. $U^{\dagger} U=1$ implies $\left(e^{-i H^{\dagger}}\right)\left(e^{i H}\right)=I=e^{0} \Longrightarrow H^{\dagger}=H$. Properties of the matrix exponential show that $\operatorname{det} U=1 \Longrightarrow \operatorname{tr} H=0$.
So $\mathfrak{s u}(2)$ contains 2×2 traceless hermitean matrices:

$$
H=\left(\begin{array}{cc}
w & u-i v \\
u+i v & -w
\end{array}\right)
$$

Recall that the manifold for $\operatorname{SU}(2)$ is the 3-sphere so we expected its Lie algebra to have a basis of three generators. These are conventionally written in terms of the Pauli matrices $S_{k}=\frac{1}{2} \sigma_{k}$

$$
s_{1}=\left(\begin{array}{cc}
0 & 1 / 2 \\
1 / 2 & 0
\end{array}\right), \quad s_{2}=\left(\begin{array}{cc}
0 & -i / 2 \\
i / 2 & 0
\end{array}\right), \quad s_{3}=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right)
$$

The commutators are

$$
\left[s_{1}, s_{2}\right]=i s_{3}\left[s_{2}, s_{3}\right]=i s_{1}\left[s_{3}, s_{1}\right]=i s_{2}
$$

$\mathfrak{s o}(3)=\mathfrak{s u}(2)$
If you have a sharp short-term memory, you will have noticed that both $\mathfrak{s o}(3)$ and $\mathfrak{s u}(2)$ are 3 -dimensional and the structure constants for our choice of basis are identical.

This illustrates a deep theorem from Lie theory:

Covering group theorem

If G is a connected matrix Lie group, then a (connected and simply connected) universal covering group \tilde{G} of G exists and is unique up to isomorphism.
If \tilde{G} is also a matrix Lie group, then the Lie algebras of G and \tilde{G} are isomorphic.

The manifold for $\operatorname{SU}(2)$ is the 3 -sphere; S^{3} is simply-connected and double-covers $\mathbb{R} P^{3}$, the manifold of $S O$ (3).

$\mathfrak{s o}(3)=$ QUANTUM ORBITAL ANGULAR MOMENTUM

If you have a sharp long-term memory, you'll also recall that components of the orbital angular momentum operator are

$$
L_{x}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right), \quad L_{y}=-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right), \quad L_{z}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
$$

and $\left[L_{x}, L_{y}\right]=i \hbar L_{z}, \quad\left[L_{y}, L_{z}\right]=i \hbar L_{x}, \quad\left[L_{z}, L_{x}\right]=i \hbar L_{y} . \quad$ The algebraic structure of orbital angular momentum is the same as $\mathfrak{s o}(3)$.

We also have that $L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}$, and $\left[L^{2}, L_{a}\right]=0$.
Perhaps you also remember that two ladder operators $L_{ \pm}=L_{x} \pm i L_{y}$ allow us to find the eigenvalues for L^{2}, and their multiplicity.

Exactly the same procedure for $\mathfrak{s o}(3)=\mathfrak{s u}(2)$ gives us the irreducible representations of the Lie algebra.
L^{2} is called a Casimir element. The eigenvalue is a function of its multiplicity, d, which is the dimension of the irreducible representation.

COMPLEXIFICATION OF LIE ALGEBRA

The ladder operators $L_{ \pm}=L_{x} \pm i L_{y}$ introduced a complex coefficient into the linear combination of algebra elements.

Complexification

Given a real-coefficient Lie algebra, \mathfrak{g}, we define a complex-coefficient Lie algebra $\mathfrak{g}_{\mathbb{C}}$ by using the same basis elements but allowing complex coefficients.

Example: $\mathfrak{s u}(2)_{\mathbb{C}}=\mathfrak{s l}(2 ; \mathbb{C})=\mathfrak{s l}(2 ; \mathbb{R})_{\mathbb{C}}$
BUT: $\mathfrak{s u}(2) \neq \mathfrak{s l}(2 ; \mathbb{R})$. They are two distinct real forms of the complex Lie algebra $\mathfrak{s l}(2 ; \mathbb{C})$.

Extending the Lie algebra coefficient group to the complex field greatly assists with finding representations.

The LorentZ group and its Lie algebra

The Lorentz group preserves Minkowski space-time intervals:
$\Lambda \in O(1,3)$ satisfies $\Lambda^{\top} g_{M} \Lambda=g_{M}$, where $g_{M}=\operatorname{diag}\{1,-1,-1,-1\}$. This condition implies $\operatorname{det} \Lambda= \pm 1$, and $\Lambda_{00}^{2}=1+\Lambda_{10}^{2}+\Lambda_{20}^{2}+\Lambda_{30}^{2}$
$O(1,3)$ has four components. The part connected to I is called $S O^{+}(1,3) . \Lambda \in S O^{+}(1,3)$ has $\operatorname{det} \Lambda=1, \Lambda_{\circ 0} \geq 1$.

The Lie algebra $\mathfrak{s o}^{+}(1,3)$ has six generators: $\Lambda=e^{i\left(\theta^{a} J^{a}+\nu^{b} K^{b}\right)}$
$J^{1}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0\end{array}\right)$, etc. $K^{1}=\left(\begin{array}{cccc}0 & i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$, etc.
with $\left[J^{a}, J^{b}\right]=i \epsilon^{a b c} J^{c}, \quad\left[J^{a}, K^{b}\right]=i \epsilon^{a b c} K^{c}, \quad\left[K^{a}, K^{b}\right]=-i \epsilon^{a b c} J^{c}$.

The LorentZ group and its Lie algebra

We now move to the complexified version of the Lie algebra and define six new generators: $N_{ \pm}^{a}=\frac{1}{2}\left(J^{a} \pm i K^{a}\right)$.
These have commutation relations

$$
\left[N_{+}^{a}, N_{+}^{b}\right]=i \epsilon^{a b c} N_{+}^{c}, \quad\left[N_{-}^{a}, N_{-}^{b}\right]=i \epsilon^{a b c} N_{-}^{c}, \quad\left[N_{+}^{a}, N_{-}^{b}\right]=0
$$

This shows us that

$$
\mathfrak{s o}^{+}(1,3)_{\mathbb{C}}=\mathfrak{s u}(2)_{\mathbb{C}} \oplus \mathfrak{s u}(2)_{\mathbb{C}}=\mathfrak{s l}(2 ; \mathbb{C}) \oplus \mathfrak{s l}(2 ; \mathbb{C})
$$

The symbol $\epsilon^{a b c}$ is the permutation symbol or Levi-Civita symbol

$$
\epsilon_{a b c}= \begin{cases}1 & \text { if } a b c=123,231,312 \\ -1 & \text { if } a b c=132,213,321 \\ 0 & \text { otherwise. i.e., repeated indices }\end{cases}
$$

SU(3) AND ITS LIE ALGEBRA

$S U(3)$ is a local symmetry of the Lagrangian for three fermion fields. It is a simply-connected and compact Lie group.
$U \in S U(3)$ satisfies $U^{\dagger} U=I$ and $\operatorname{det} U=1$. The Lie algebra defined by $U=e^{i t H}$ is 8-dimensional with $H^{\dagger}=H$ and $\operatorname{tr} H=0$. A basis is given by the Gell-Mann matrices $T^{a}=\frac{1}{2} \lambda^{a}$ with

$$
\begin{aligned}
& \lambda^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \lambda^{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \lambda^{5}=\left(\begin{array}{ccc}
0 & 0 & i \\
0 & 0 & 0 \\
-i & 0 & 0
\end{array}\right) \quad \lambda^{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \lambda^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda^{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

SU(3) AND ITS LIE ALGEBRA

The structure constants for $\mathfrak{s u}(3)$ are defined by $\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}$, where $a, b, c \in\{1, \ldots, 8\}$ and

$$
f^{123}=1 ; f^{147}=-f^{156}=f^{246}=f^{257}=f^{345}=-f^{367}=\frac{1}{2} ; f^{458}=f^{678}=\frac{\sqrt{3}}{2}
$$

all permutations of the above indices take \pm values as appropriate (e.g., $f^{132}=-f^{123}=-1$) and indices not defined are o (e.g., f $f^{134}=0$).

Fundamental questions (again)

Q: How to label elements of uncountably infinite groups?

- We parametrise them, and determine the allowed space of parameters.
- (Matrix) Lie groups are a special type of continuous group, where the parameter space is a differentiable manifold and the product and inverse are continuous maps.
- A (finite-dimensional matrix) Lie algebra is obtained as the linearisation of a matrix Lie group near its identity element.
- The exponential map takes us from the algebra to the group $g=e^{i T}$ but is only a homeomorphism (1-1 and onto) in a neighbourhood of the identity.

Fundamental questions (again)

Q: How do we determine when two groups are "the same"?

- A complete answer is not possible in general.
- Two Lie groups are "the same" if there is a homeomorphism of their manifolds that preserves the group product:
$\phi: G \rightarrow H$ with $\phi\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)$.
- Two Lie algebras are "the same" if there is a linear mapping $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ with $\varphi([X, Y])=[\varphi(X), \varphi(Y)]$ that is one-to-one and onto (an isomorphism).
- Two different Lie groups can have isomorphic Lie algebras.

Backup Slide

