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LECTURE 2: LIE ALGEBRAS AS LINEAR
APPROXIMATION TO LIE GROUPS




SO(2): THE CANONICAL EXAMPLE

Anti-clockwise rotation of the o\ fon
plane about the origin by an (oing.cos e,
angle 0 is given by 5 e TTeos,sino)
N : o)
Cos —Sin
R(0) = (sin 6 cosf )

We can break this down into many tiny rotations:

o=t = (2 2R =[G P

N
X" — e asN — oo.

_1> dR(6)

o)~ do

6=0




SO(2): THE CANONICAL EXAMPLE

- dR(0
We have R(#) = e with X = #

6=0
This is even easier to express when working with U(1)
R(B) = & withi= 9RO
d9 920

(compute the matrix products X2, X3, X4 ... with 2, i3, i, ... what do you notice?)




SO(2): THE CANONICAL EXAMPLE

We have R(6) = e with X = 9R(®)

a0 |p_q
This is even easier to express when working with U(1)
R(0) = e withi= dR(9)

(compute the matrix products X2, X3, X4 ... with 2, i3, i, ... what do you notice?)

Matrix Lie group generators

Suppose g(t) is a continuous path of matrices in G with g(0) = I.
Then there is a generator, X, defined by
dg(t)

X=—at

and g(t) = e for elements along this path.

t=0

The collection of all possible generators forms the Lie algebra g.




ALGEBRAIC DEFINITION OF LIE ALGEBRA

A real coefficient Lie algebra g is an n-dimensional vector space
with an operation called Lie product, or Lie bracket written [a, b]
satisfying
1. Closure. If a,b € g then [a, b] € g.
2. Linearity. If a,b,c € g, and «, 8 € R, then
[aa + b, c] = afa, c] + B[b, c].
3. Anti-symmetry. [a,b] = —[b,a] for all a,b € g.
4. Jacobi’s identity. For a,b,c € g,
[a,[b,c]] + [b,[c,a]] + [c,[a, b]] = o.
If the elements are square matrices, the Lie product is the
commutator: [a,b] = ab — ba.

]
Where did the commutator come from?




ORIGIN OF THE MATRIX COMMUTATOR

Multiplication in a matrix Lie group G requires that eXe¥ = g € G,
with g = e for some other generator Z € g.

»!Il Since X, Y are matrices eXe¥ £ XtY Ik
Rather, we have

The Baker-Campbell-Hausdorff formula

- (£2) ()

n=0 n=0

=exp [X+ Y+ 21X Y]+ (X X Y + [V, [V, X)) + -+ |

So we see that Z is expressed as a sum of matrix commutators,
and this the origin of the Lie bracket.
(alt., suppose a = (I + A), b = (I + B) are close to | € G, show aba~" ~ b + [A, B]. )




LIE ALGEBRA OF SO(3)

For a fixed direction i, the rotation R(n, #) is a continuous path of
group elements with R(fi,0) = I. Set X =

R(f,0) = e

dR(7.0)
90 ’020, so that




LIE ALGEBRA OF SO(3)

For a fixed direction i, the rotation R(n, #) is a continuous path of

group elements with R(ri,0) = I. Set X = M’e , S0 that
=0

do
R(f,0) = e

The defining property of matrices in SO(3) is RT = R~". For
elements along the path generated by X, this implies e?X’ = e—X
for all 4, so that XT = —X.

0O X1 X
A generator for SO(3) must have the formX=| —x; 0 X3
—X; —X; O

and we see that the vector space for the Lie algebra so(3) is3 x 3
antisymmetric matrices.

(compute the product of two matrices X, Y € so(3). Is XY antisymmetric?)
(show that [X, Y] = XY — YX is antisymmetric if X, Y are )




LIE ALGEBRA OF SO(3) (PHYSICS VERSION)

Before going any further, we must switch to physics notation, and
introduce a factor of i into the matrix exponential definition. This
converts the generators of SO(3) from being antisymmetric to being
hermitean, and more closely related to quantum observables.

We now have R(i,0) = e/” with J = —iX  (show thatJi = J,)
The standard physics basis for the Lie algebra so(3) is then

O 0O O O O | O —i O
Jxk=o o —-i] Jy=1l0 o of J;,=|i 0 ©
O i O —i 0 O O 0 O

subscripts x, y, z refer to rotation about x,y,z-axes respectively.

Direct calculation shows [Jx,Jy] = ilz, Uy,J)z] = ilx, Uz, Jx] = ily.




BASIS, STRUCTURE CONSTANTS

The vector space structure of the Lie algebra greatly simplifies
the amount of information required to describe it.

Let {T",....T™} be a basis for an m-dimensional real-coefficient
Lie algebra. Every T € g is uniquely written as T = >0 979,
with 69 € R.

|
The commutators are [T%, T?] = i1 . faP¢T¢, and the numbers
£9b¢ are called the stucture constants.

- From now on we will omit the summation symbol and assume
repeated indices are to be summed over.

- The factor of i is required above as we are using the physics
definition g = /T



LIE GROUP AND ALGEBRA OF SU(2)

A matrix U € SU(2) has UTU = 1 and detU = 1.

Suppose U = e, UTU = 1implies (e=H")(eM) = | = &> = H = H.
Properties of the matrix exponential show that detU =1 = trH = 0.
So su(2) contains 2 x 2 traceless hermitean matrices:

by ( wooou-— IV)
u—+iv.  —w
Recall that the manifold for SU(2) is the 3-sphere so we expected its Lie

algebra to have a basis of three generators. These are conventionally
written in terms of the Pauli matrices s, = 1oy

s=(z 6) == o) ==(o %)

The commutators are

[S1,S5] = iS5 [S2,S5] = iSq [S3,54] = IS».

8]



s0(3) = su(2)

If you have a sharp short-term memory, you will have noticed
that both so0(3) and su(2) are 3-dimensional and the structure
constants for our choice of basis are identical. &

This illustrates a deep theorem from Lie theory:

Covering group theorem

If G is a connected matrix Lie group, then a (connected and
simply connected) universal covering group G of G exists and is
unlque up to isomorphism.

If G is also a matrix Lie group, then the Lie algebras of G and G
are isomorphic.

The manifold for SU(2) is the 3-sphere; S3 is simply-connected
and double-covers RP3, the manifold of SO(3).




50(3) = QUANTUM ORBITAL ANGULAR MOMENTUM

If you have a sharp long-term memory, you’ll also recall that
components of the orbital angular momentum operator are

Ly = —in(y2 —z2 ) Ly = —in(zZ —xL), L= —ir(xZ -yZ)

structure of orbital angular momentum is the same as so(3).

We also have that L? = L} + L + L2, and [L?, L] = ©.

Perhaps you also remember that two ladder operators L+ = Ly £ L,
allow us to find the eigenvalues for L2, and their multiplicity.

Exactly the same procedure for so(3) = su(2) gives us the irreducible
representations of the Lie algebra.

L2 is called a Casimir element. The eigenvalue is a function of its
multiplicity, d, which is the dimension of the irreducible representation.




COMPLEXIFICATION OF LIE ALGEBRA

The ladder operators L. = Ly + iLy introduced a complex
coefficient into the linear combination of algebra elements.

Complexification

Given a real-coefficient Lie algebra, g, we define a
complex-coefficient Lie algebra g¢ by using the same basis
elements but allowing complex coefficients.

Example: su(2)c = sl(2; C) = sl(2; R)c

BUT: su(2) # sl(2; R). They are two distinct real forms of the
complex Lie algebra sl(2; C).

Extending the Lie algebra coefficient group to the complex field
greatly assists with finding representations.



THE LORENTZ GROUP AND ITS LIE ALGEBRA

The Lorentz group preserves Minkowski space-time intervals:
A € 0(1,3) satisfies ATgyA = gu, where gy = diag{1, —1, —1, —1}.
This condition implies det A = +1, and A3y = 14+ Ajy + A35 + A3,

0(1,3) has four components. The part connected to [ is called
SO*(1,3). A € SOT(1,3) has det A = 1, Ago > 1.

The Lie algebra so™(1,3) has six generators: A = ei(¢%/+1°k?)

0O 0 0 O o i oo

0O 00 O i o0 o
J'= |, etc. K= . etc.

0O 0 O —i O 0 0O

o0 i O O 0 0 O

with [J°, 7] = ie®beje,  [j,KP] = jeabeke, K9, Kb] = —ieobee.



THE LORENTZ GROUP AND ITS LIE ALGEBRA

We now move to the complexified version of the Lie algebra and
define six new generators: N = 1(J% £ iK9).
These have commutation relations

[NG,NO] = ie®eNS,  [N9,NP] =ie®NS, [N9,N°] =0
This shows us that

507 (1,3)c = su(2)c @ su(2)c = sl(2; C) @ sl(2; C).
The symbol €€ is the permutation symbol or Levi-Civita symbol

—1 ifabc = 132,213, 321

1 if abc = 123,231,312
€abc =
0 otherwise. i.e., repeated indices




SU(3) AND ITS LIE ALGEBRA

SU(3) is a local symmetry of the Lagrangian for three fermion fields. It
is a simply-connected and compact Lie group.

U € SU(3) satisfies UTU = I and det U = 1. The Lie algebra defined by

U = e'" is 8-dimensional with H' = H and tr H = 0. A basis is given by
the Gell-Mann matrices T? = 1\ with

0O 1 O o —i o 1 0 O
M=[1 o o] =|i o o] M¥=[o —1 o
0O 0 O O 0O O O 0 O
0O 0O 1 0O o | O 0 O
M=o o o] =0 o0 ol X=|0 o0 1
1 0 O —i o0 o O 1 O
0O 0 O ; (1 0 ©
N=|o o —i|] X¥=—1]0 1 o0
o i o 3\o 0o —2



SU(3) AND ITS LIE ALGEBRA

The structure constants for su(3) are defined by [T, T?] = if9b¢T¢, where
a,b,ce{1,...,8}and

123 _ 4. £I47 _ _ £156 _ £246 _ £257 _ £345 _  £367 __ 1. £458 _ £678 __ /3
1B =1y 97 = f156 = fU6 = 757 — fS — 307 — 1, fusE — f67° — 3

all permutations of the above indices take =+ values as appropriate
(e.g., f13 = —f™ = —1) and indices not defined are o (e.g., f3* = 0).



FUNDAMENTAL QUESTIONS (AGAIN)

Q: How to label elements of uncountably infinite groups?

- We parametrise them, and determine the allowed space of
parameters.

- (Matrix) Lie groups are a special type of continuous group,
where the parameter space is a differentiable manifold and
the product and inverse are continuous maps.

- A (finite-dimensional matrix) Lie algebra is obtained as the
linearisation of a matrix Lie group near its identity element.

- The exponential map takes us from the algebra to the group
g = e'T but is only a homeomorphism (1-1 and onto) in a
neighbourhood of the identity.




FUNDAMENTAL QUESTIONS (AGAIN)

Q: How do we determine when two groups are “the same”?

- A complete answer is not possible in general.

- Two Lie groups are “the same” if there is a homeomorphism
of their manifolds that preserves the group product:
¢ : G — Hwith ¢(g192) = ¢(g1)#(g2)-

- Two Lie algebras are “the same” if there is a linear mapping
¢ g — hwith o([X, Y]) = [¢(X), ¢(Y)] that is one-to-one and
onto (an isomorphism).

- Two different Lie groups can have isomorphic Lie algebras.
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