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Lecture 1: Groups encountered in
physics



A group is the
mathematical formulation of symmetry

A symmetry is a transformation that leaves something
unchanged: T : M→ M;
e.g., T(x, y) = (−x, y) is a re�ection in the y-axis and a symmetry
of the unit disk.

Physics is independent of the observer’s coordinate system, so
equations that relate physical quantities must have a form that
respects a change of coordinates.

Newton’s equation of motion ~F = m~a is said to be covariant,
while kinetic energy T = 1

2m(~v ·~v) is invariant under a rotation of
coordinate axes.
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Example

A Lagrangian invariant under Euclidean isometries

L
(
d~q
dt , ~q

)
= T

(
d~q
dt

)
− V(~q) L : (M, TM)→ R

Suppose M = R3 and that L is invariant under isometries
A : R3 → R3 with ‖A(~q1 − ~q2)‖ = ‖~q1 − ~q2‖. Then

L
(
d~q
dt , ~q

)
= L

(
dA~q
dt ,A~q

)
and this implies L can be a function of ‖~q‖ and ‖d~qdt ‖ only.

This argument extends to Lagrangian densities of quantum �eld
theory. If a �eld theory is invariant under a group of symmetries,
this constrains the functional form of the Lagrangian.
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Definition of a group

(G, ∗) is a set of elements a ∈ G with binary operation a ∗ b such
that the following hold
1. Closure. If a,b,∈ G, then a ∗ b ∈ G.
2. Associativity. (a ∗ b) ∗ c = a ∗ (b ∗ c).
3. Identity element. There is an I ∈ G, such that a ∗ I = I ∗ a = a
for all a ∈ G.

4. Inverses. If a ∈ G, then there is a−1 ∈ G such that
a ∗ a−1 = a−1 ∗ a = I.

If the group operation also satis�es a ∗ b = b ∗ a, the operation is
called commutative and the group is called Abelian.
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Definition of a group

(G, ∗) has closure, associativity, identity element, inverses

Examples
· Integers with addition (Z,+). What is the identity? an
inverse? Is this group Abelian?

· Complex numbers with multiplication: (C \ 0, ∗). What is the
identity? an inverse? Is this group Abelian?
· Square, n× n, invertible matrices with entries in R (or C) and
matrix multiplication as the binary operation form the
general linear group GL(n,R) (or GL(n,C)).
· Isometries of Rn with composition form the Euclidean group.
· Transformations of Minkowski spacetime that preserve

(c∆t)2 − (∆x1)2 − (∆x2)2 − (∆x3)2 form the Poincaré group.

5 16



Definition of a group

(G, ∗) has closure, associativity, identity element, inverses

Examples
· Integers with addition (Z,+). What is the identity? an
inverse? Is this group Abelian?
· Complex numbers with multiplication: (C \ 0, ∗). What is the
identity? an inverse? Is this group Abelian?

· Square, n× n, invertible matrices with entries in R (or C) and
matrix multiplication as the binary operation form the
general linear group GL(n,R) (or GL(n,C)).
· Isometries of Rn with composition form the Euclidean group.
· Transformations of Minkowski spacetime that preserve

(c∆t)2 − (∆x1)2 − (∆x2)2 − (∆x3)2 form the Poincaré group.

5 16



Definition of a group

(G, ∗) has closure, associativity, identity element, inverses

Examples
· Integers with addition (Z,+). What is the identity? an
inverse? Is this group Abelian?
· Complex numbers with multiplication: (C \ 0, ∗). What is the
identity? an inverse? Is this group Abelian?
· Square, n× n, invertible matrices with entries in R (or C) and
matrix multiplication as the binary operation form the
general linear group GL(n,R) (or GL(n,C)).

· Isometries of Rn with composition form the Euclidean group.
· Transformations of Minkowski spacetime that preserve

(c∆t)2 − (∆x1)2 − (∆x2)2 − (∆x3)2 form the Poincaré group.

5 16



Definition of a group

(G, ∗) has closure, associativity, identity element, inverses

Examples
· Integers with addition (Z,+). What is the identity? an
inverse? Is this group Abelian?
· Complex numbers with multiplication: (C \ 0, ∗). What is the
identity? an inverse? Is this group Abelian?
· Square, n× n, invertible matrices with entries in R (or C) and
matrix multiplication as the binary operation form the
general linear group GL(n,R) (or GL(n,C)).
· Isometries of Rn with composition form the Euclidean group.
· Transformations of Minkowski spacetime that preserve

(c∆t)2 − (∆x1)2 − (∆x2)2 − (∆x3)2 form the Poincaré group.

5 16



Subgroups

A subgroup H ⊂ G is a subset of elements that maintains the
properties of closure, associativity, identity element, inverses

Groups and subgroups can have a �nite number of elements, be
countably, or uncountably in�nite.

Examples
· The trivial group (or subgroup) has just the identity element.
· Symmetry groups of polyhedra are �nite subgroups of
GL(3,R).
· The n-dimensional lattice group (Zn,+) is a countably
in�nite subgroup of (Rn,+).
· Euclidean isometries that �x the origin are an uncountably
in�nite subgroup of GL(n,R) called O(n).
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Fundamental questions

Q: How to label elements of uncountably in�nite groups?
We parametrise them, and determine the allowed space of
parameters.

Q: How do we determine when two groups are “the same”?
A complete answer is not possible in general, but we will learn
some methods of attack in the next few lectures.
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Definition of a Lie Group

A Lie group is a group, (G, ∗) whose elements are parametrised
by a di�erentiable manifold M, so that each x ∈ M is in 1-1
correspondence with an element g(x) ∈ G, and

the product induces a di�erentiable map
Given x, y, z ∈ M, such that g(x) ∗ g(y) = g(z), the function
φ : M×M→ M de�ned by φ(x, y) = z, is di�erentiable.

the inverse de�nes a di�erentiable map
Given x, y ∈ M such that g(x) ∗ g(y) = g(y) ∗ g(x) = I, the function
ν : M→ M de�ned by ν(x) = y is di�erentiable.
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(Definition of a Manifold)

image by Stomatapoll - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=23075293
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Common Matrix Lie groups

Lie group Compact Connected Dimension De�nition

GL(n,R) N N n2 detA 6= 0
SL(n,R) N Y n2 − 1 detA = 1
O(n) Y N n(n− 1)/2 ATA = I
SO(n) Y Y n(n− 1)/2 ATA = I, detA = 1
O(1, 3) Y N 6 ΛTgΛ = g
SO+(1, 3) Y Y 6 det Λ = 1, Λ00 ≥ 1
U(n) Y Y n2 A†A = I
SU(n) Y Y n2 − 1 A†A = I, detA = 1

g is the Minkowski metric tensor g00 = 1,g11 = g22 = g33 = −1, gij = 0.

Of the above groups, only SU(n) are simply connected.
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Common Matrix Lie groups

· The manifold for U(1) and for SO(2) is the unit circle S1.
U(1) = {z ∈ C | z†z = 1} = {eiθ, θ ∈ [0, 2π)}.

· The manifold for SU(2) is the 3-sphere S3.
· The manifold for SO(3) is RP3 (the 3-sphere with antipodal
points identi�ed).
· The manifold for O(3) is two copies of RP3, one copy is SO(3),
the other parametrizes isometries that have detA = −1.

Asides:
The group structure on S1 comes from multiplication of unit
complex numbers.
The group structure on S3 comes from multiplication of unit
quaternions.
There is no Lie group associated with the 2-sphere, S2.
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SO(3): The Rotation Group

Algebraically
A ∈ SO(3) means A is a 3× 3 real matrix with ATA = I and detA = 1.
So we have 9 variables with 6 constraints 〈why?〉, implying that
SO(3) should be a 3-dimensional manifold.
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SO(3): The Rotation Group

Geometrically
The isometry R(~n, θ) ∈ SO(3), acts on R3 as a rotation by angle θ
about a line through the origin in direction ~n.
We use a right hand rule to specify that the rotation is
anti-clockwise when your thumb points along ~n.

If ~n points along the z-axis,

R(~z, θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

 ψ θ

ϕ

$%

x y

z
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SO(3): The Rotation Group

Local versus Global structure
The manifold for SO(3) is NOT S2 × S1.
This is because (as matrices) R(~n, θ) = R(−~n,−θ)

Note also that R(~n,0) = I for any ~n.
〈What happens when θ = π? 〉

The fact that the manifold for SO(3) is RP3
is most easily proved by mapping vectors
into a subspace of the quaternions.

We will see later that SO(3) and SU(2) are
closely related.

image by Eugene Antipov, CC BY-SA 3.0, https://commons.wikimedia.org/wiki/File:Hypersphere.png
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A few more definitions

Conjugacy
Two group elements a,b are said to be conjugate if there is a
third element so that b = gag−1. The conjugacy class of a ∈ G is
the set of elements Cl(a) = {gag−1 | g ∈ G}

If G is a matrix group, then all elements of a conjugacy class have
the same rank, determinant, trace, eigenvalues and their
geometric multiplicities (but not the eigenvectors!). This is
succinctly summarised by the phrase

“Character is a function of class”.

Example: In SO(3), Cl(R(~n, θ)) = {R(~u, θ) | ~u ∈ S2}.
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A few more definitions

Normal subgroup
A subgroup N ⊂ G is normal if for n ∈ N, and all g ∈ G, gng−1 ∈ N.
G and {I} are referred to as the trivial normal subgroups of G.

A simple group is one that has no non-trivial normal subgroups.

In an abelian group, all subgroups are normal.

Example: SO(3) is a simple group.

Example: O(3) has a non-trivial normal subgroup N = {I,−I}.
SO(3) is also a normal subgroup of O(3).

〈show that translations form a normal subgroup of the Euclidean group〉

16 / 16



Backup Slide


	Lecture 1: Groups encountered in physics
	Appendix

