Lecture 6: Divergences,
renormalization, renormalization

group, regularization, QED beta
function, running mass and

coupling
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Loops lead to divergences
(See Chapter 8, Sec 8.6.1)

Example: Consider the one-loop correction to the scalar propagator on A¢* theory.

Consider the single loop contribution to the scalar 1PI self-energy II(p?) in
(A/4¢* theory in Eq. (7.5.49). Using the Feynman rules in Sec. 7.6.1 we have
—iA for the vertex from Eq. (7.6.10), a symmetry factor of S = 2 from a vertical
flip of the loop, a scalar propagator i/f? —m? + ie and a loop integral [d*¢/(2m)*.
Define the O(A!) contribution to —iIl(p?) as —ill; (p?). With a cut-off it is

A A die i
—ill, (p?) = =—i— 8.6.3
S 1(]7) D D 22/ (27.‘.)462_m2+2‘€’ ( )

< \ /) <«<——

where the result is independent of p?, there are no external lines on a 1PI diagram,
and the subscript 1 denotes O(\!). Rotating to Euclidean space and using rotational
invariance, d*/ — id*(g = ir?(%,dl%, and k* — —k% we find
— il =—iAL 72/ (2m) Y [ d€2 02, /(02 +m?)] (8.6.4)
—z’()\/327T2)f dé% [1—m?/(l4+m?)]=—i(\/3272)[A? —m? In({A* +m?}/m?)]
—i(A/327%)[A%? —m? In(A? /m?)+O(1/A?)] .
We see that II; is both quadratically and logarithmically divergent as A — oc.
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Renormalization of QED
(See Chapter 8, Sec 8.5)

BPHZ theorem: All divergences in a renormalizable theory are removed by the
renormalization of the primitively divergent diagrams through the renormalization
of fields, masses and coupling constants.

QED is a renormalizable theory: In a renormaliaable theory like QED evaluating loop intergals does not
introduce new interactions. All divergences can be absorbed into renormalization of the fields, masses

and so we can define the remormalized QED action in Ré gauges as

S[ih, v, A= [t | SS70 0 (9 —md —al Ao) ¥ =3 Fo F = 555 (0, 48)
= [d’x _Zf{Zizﬁf(iﬁ—mS)wf—ZJ\/Z_gqé"zﬁfﬁwf} Z3 3 Fyu P — Zs 5 (0, Au)ﬂ
= [d'a |5 {240t 19 —mid)p! — 2/ ) poT} = Z5 L By P — (0, 40)?)
= [dz |3 T (i@—mf —gf A) YT — L Fu F* — 52 (9, A")? (8.5.1)
FY (@ - Do gl (2 m —m! )G I (2] ~1)g! $F T}~ (251 Fu P
= [dix {Zf@f (i9—m! —qF ) F =L F, P — 1 (3, Ar)?

+3 07 (i0] p—of,) ! — o] g BT AT} — G5 L Fy |
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Renormalization of QED
(See Chapter 8, Sec 8.5)

where the bare fields, masses, charges and gauge parameter are w({, AY mg', q{;, o
respectively and their renormalized versions are ¢/, A*. m/, ¢/, €. We have the mul-
tiplicative renormalization constants: (i) ZJ is the wavefunction renormalization
constant for flavor f; (ii) Z3 is the wavefunction renormalization constant for the
photon; and (iii) Z{ is the charge renormalization constant for flavor f. Comparing
the first, second and third lines of Eq. (8.5.6) we see that we have defined

Al
S = \/waf L AR = AR - gl = 1
Y Y, q
0 : 0 ’ 0 Z‘Qf\/Zg

Comparing the last two equalities we see that we have the counterterm coefficients

¢ &o=Zsk. (8.5.2)

71 =146, Zs=1+65; ZIiml=ml+om!; z{ =1+67. (8.5.3)

Ultraviolet regulator and renormalization point: We will need to introduce some effective requlator to

control divergences /\, where the removal of the regulator means A — 0. We also need to introduce
some scale at which we will define the parameters of the theory. We define this scale as the

renormalization point 4 . Clearly the renormalization contestants are a function of A. In a renormalizable

theory we can hold the parameters of the theory fixed at ¢ and as we take A — o0, all divergences are
absorbed into the renormalization constants.

Since the choice of 4 was arbitrary, we can change y and the renormalized charges/coupling constants

g(u1) and masses m(u) so that the physical properties of the renormalized theory remain unchanged.
The transformations that do this make up that we call the renormalization group.

sssssssssssssss
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Renormalization of QED
(See Chapter 8, Sec 8.5)

For notational simplicity we consider a single fermion flavor with bare mass my
and bare charge qy. Consider an arbitrary QED bare Green’s function, Gg;fejn”),
involving the bare fields AY, 1y and vy with a total of n, fermion operators and
n. photon operators. Since we have AY = +/Z3(u, A)AY, v = v/ Z2(u, A)yp and
Yo = \/Za(u, )9 the bare fields are functions of A and the renormalized fields are

functions of x. The bare and renormalized Green’s functions are related by
G () = (QUT Aoy, (21) -+ Aow, (2, o (1) -+ o (a0n,,)|2)
= 2o (1, ™23 (1, M2 (QUT Ay, (1) - v, (2, (1) - (o, )I2)
= [Za(u, A"/ 25 (u, A PG () (8.5.51)

For brevity we now suppress spacetime indices and coordinates. Note that Gg;fe’n”)
depends only on the bare quantities A, qo(A), mo(A) and &y(A). The renormalized
Green’s function G("¥™v) is independent of A since QED is renormalizable but
depends on the renormalization scale p and on q(u), m(u) and £(u). For simplicity

we work in Feynman gauge here so that £(A) = Z3(u, A)&(p) = 0. So we can write

Grat™ (A, qo(A), mo(A)) = [Za(p, )™/ Zs (1, A"/ 2 G (11, g(n), m(p))

sssssssssssssss
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Renormalizaton group equations
(See Chapter 8, Sec 8.5)

Recall that we remove the regulator, A — oo, while holding all renormalized quan-
tities fixed at any chosen renormalization point, p. Similarly we vary the renormal-
ization point p while holding all bare quantities fixed. So by construction

_ 0 (ny,my) 0 Ny /2 Ney /2 (N, 1)
0= M@Gbare - M@ ([ZQ(Ma A)] [ZS(Ma A)] G (:ua Q(:u)a m(:u)))
0 n n o 0
=z Pz 2 Dy Y — S ym— |G 5.52
2 3 Malu+2’73—|— Q’YQ—I—ﬁaq—l—’y ma— G : (8.5.52)
where we have defined
dq 1 023 1 0Z 1w om
= u— = - e —— i = —— . 8.5.53
3 b B=Z 00 2= Z 00 = mon ( )

We have arrived at the Callan-Symanzik equation, (Callan, 1970; Symanzik, 1970),

0 n zy 0 0
— + Dyg+ Ly + f—Fym— |G ) =0, 8.5.54
(uaﬂ 5 3T 5 Baq 9! 8m> ( )
We refer to S as the [-function and to -, as the anomalous mass dimension.
Equations such as the Callan-Symanzik equation are often referred to collectively
as renormalization group equations.
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Regularization methods
(See Chapter 8, Sec 8.6.1)

Momentum cut-off: A simple momentum cut-off, A, violates both Lorentz
invariance and gauge invariance. Violations of gauge invariance remain even after
A — oo. For example, we find that ¢,I1""(¢)|a—o00 # 0. To illustrate why this is,
substitute S(p 2 — P+ m/p* — m? + ie into Eq. (8.5.20) with a cut-off to give
¢, 117 (q) oc [T d*0tr[y*{ST ({4 q)— S/ (¢)}]. We can evaluate perturbation theory
integrals in Euchdean space since the Wick rotation gives no contribution from
curves C1 and Cj3 for £° in Fig. A.1 of Sec. A.4. From Egs. (A.4.6) and (A.6.2),

k2 — —k%, dY —id*g and dYp = 2n)lLdlg = w205d05 . (8.6.1)

Evaluate the trace, retain leading terms as £? — oo after analytic continuation to
Fuclidean space. This leads to

@11 (q) ~ [N Aty — P f(2q - £)2))) 2 ~ gt [N, ~ A2, (8.6.2)

which does not vanish as A — oco. We have not bothered to indicate the rotation
of g and " to Euclidean space and back. This result remains true if we attempt
to use some smooth cut-off such as a Gaussian function since any kind of cut-oft
destroys the momentum-translational invariance of the loop integral. So momentum
cut-offs are not appropriate regulators in gauge theories.
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Regularization methods
(See Chapter 8, Sec 8.6.1)

Pauli-Villars regularization: The essence of Paul-Villars regularization (Pauli
and Villars, 1949) is to subtract from any loop integral the same loop integral with
a much larger mass M in the propagators. This suppresses the loop integral at large
loop momenta, ¢? > M?, where masses and external momenta are unimportant.

For example, at one-loop in (x/3!)¢? theory with mass m we have an O(x?) 1PI
contribution to the ¢ self-energy, —iIl(p?), given by

—illy(p?) = - @ < = (—ik)*LI(p®), where (8.6.5)

I( 2):/ d*/ ( l _ ¢ ¢
POZ et [@—m2vic (pr €2 —m2tic  2—M2tic (p+6)2—M?+ic|’

There is one (—ik) for each vertex, a symmetry factor S = 2 for 2! ways to exchange
lines in the loop and no external propagators. Use £° — /¥, 62 — —04%,, and d*lg =
25 Al = A% dlE . At large (3 we have 1(0) = (i/1672)(—1)? [ dl% 02[O(1/0%)—
O(1/¢%)] and so the large ¢% contribution to I is [ d¢% O (1/€4 ) and so converges.
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Regularization methods
(See Chapter 8, Sec 8.6.1)

Pauli-Villars regularization was widely used in the early days of quantum field
theory. For an application to QED see for example Bjorken and Drell (1965), Das
(2008) and Schwartz (2013). It preserves the momentum translational invariance
of momentum integrations, while also being an intuitively satisfying means of con-
trolling large-momentum behavior. However, there are a number of shortcomings
that limit its modern use. Firstly, for diagrams with multiple loops one ghost per
particle is insufficient and additional ghost particles are required. While it can be
useful in abelian gauge theories where a massive Proca vector boson coupled to
conserved currents is consistent, the method breaks down in the case of nonabelian
gauge theories where massive vector bosons can not be consistently described. The
method also fails in the case of chiral gauge theories where fermions are massless.
Schwinger proper time regularization: This technique involves making use of Laplace
transforms and the introducing a regularization parameter to control the divergences of these. It
IS not currently in popular use.

Lattice field theory regularization: Euclidean spacetime is put onto a finite four-dimensional
lattice. It has been used with considerable success to study nonperturbative QCD. It is a first
principles approach to nonperturbative studies of quantum field theory in that it is systematically
improvable. Lattice gauge theory is a gauge invariant form of cut-off regularization. Gauge
invariance is the most important symmetry to maintain in any regularization of gauge theories.
The lattice violates rotational and translational invariance since it uses a finite spacetime volume,

but these are recovered in the continuum and infinite volume limits. The treatment of chiral
symmetry on the lattice requires some care. A introduction to lattice QCD is given in Sec. 9.2.5.

nnnnnnnnnnnnnnn
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Dimensional regularization
(See Chapter 8, Sec 8.6.2)

In d < 4 dimensions logarithmically divergent integrals such as Eq. (8.6.5) are
convergent without the Pauli-Villars regulator or any form of cut-off. We define

d=4—c¢ (8.6.13)

so that ¢ = 4—d. Beware that the choice 2¢ = 4—d is also common and used in some
texts. We have A ~ 1/€ as the ultraviolet regulator, where ¢ — 07 corresponds to
A — oo and is taken at the end of calculations. Because we can make shifts in the
momentum integral then Eq. (8.5.20) remains valid and ¢, IT*” = 0 as required.

Similarly in d-dimensions we find for the QED Lagrangian density of Eq. (7.6.16)
[AM] = M(d=2)/2, )] = Md—1)/2 'm] = M and [g.] = ME—(d=1)=(d=2)/2 _ \q(4=d)/2 _
M€/2. Using an arbitrary mass scale i to keep g. dimensionless in natural units we

€/2

replace q. — u=9D/2q, = u/2q.. The d-dimensional Lagrangian density is

L= —m)p— (8,4, — 8,A,) (0" A — " A¥) — =D g ppep (8.6.15)
— &(ZE — mW — iF,uI/F'uV 3

where in d-dimensions the covariant derivative is D* = 9% + ip4=H/2¢, A*. In
Yukawa theory we similarly have g — p(*=#/2g = 1,¢/2g.
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Dimensional regularization
(See Chapter 8, Sec 8.6.2)

In d < 4 dimensions logarithmically divergent integrals such as Eq. (8.6.5) are
convergent without the Pauli-Villars regulator or any form of cut-off. We define

d=4—c¢ (8.6.13)

so that € = 4—d. Beware that the choice 2¢ = 4—d is also common and used in some
texts. We have A ~ 1/e as the ultraviolet regulator, where ¢ — 07 corresponds to
A — oo and is taken at the end of calculations. Because we can make shifts in the
momentum integral then Eq. (8.5.20) remains valid and ¢, II*” = 0 as required.

In natural units the action, S[¢] = [d%z L, for any theory must be dimensionless
in d dimensions since we exponentiate it in the path integral. Since [d%z] = M™¢
then we require [£] = M. Since [0,] = M then we can deduce the dimension of any
field from its kinetic term. For example, for scalars we must have [9,¢0"¢] = M?
and so [¢] = M@72/2 For a fermion, since we must have [ @Y] = M?, then
Y] = M{@=1)/2 Since particle masses m appear once for each 0,, in the kinetic terms
of theories, then [m] = [9,] = M. In ¢* theory in d-dimensions the interaction term
has dimension [(A/41)¢%] = M? and so [\] = M?72(472) = M?~?_ However, since we
prefer to keep the coupling dimensionless as it is in d = 4 we introduce an arbitrary
mass scale, u, with [u] = M and make the replacement A — u*=9\ = p\ so that

sssssssssssssss
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Dimensional regularization
(See Chapter 8, Sec 8.6.2)

now [\ = MY. In summary, for ¢* theory in d-dimensions the Lagrangian density
1S

L=10,00" — Lm2¢* — (u*~9N\/4)p*, (8.6.14)

where \ is dimensionless. In the limit ¢ — 07 we have pt—¢

= u¢ — 1 and so
1 and € both become irrelevant in the e — 07 limit for physical quantities in a
renormalizable theory. In dimensional regularization the arbitrary mass scale p can
be used as the renormalization scale pu.

Similarly in d-dimensions we find for the QED Lagrangian density of Eq. (7.6.16)
(AR = M@=D/2 1) = ME-D/2 01— M and [q,] = M3~ (@-D=(@-2)/2 _ \@a-d)/2 _
Me/2. Using an arbitrary mass scale u to keep q. dimensionless in natural units we

€/2

replace q. — u*~H/2g, = u/?q.. The d-dimensional Lagrangian density is

L= —m) — (0,4, — 9,4,) (" A — 0" A*) — p=D2qp gy (8.6.15)
— &(Zﬁ — mW — iF,ul/F'uy 3

where in d-dimensions the covariant derivative is D* = O* + ip4=9/2¢, A*. In
Yukawa theory we similarly have g — ,u(4_d)/_ 2g = u/?g.

sssssssssssssss
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Dimensional regularization
(See Chapter 8, Sec 8.7.4)

Interpretation of i as a physical scale: Renormalized perturbation theory
will converge most quickly in powers of the coupling ¢. when the loop corrections
are as small as possible. Consider the one-loop result for II(¢q?) above for Q% =
—q* > m?. The effects of the loop correction are smallest when pu? ~ @Q?. This
pattern continues at higher loops with higher powers of ¢*. So we should choose p
to be stmailar to the characteristic momentum scale relevant to the physical process so
that we have optimal convergence at a given order in the renormalized perturbation
theory. In this way we associate p with the characteristic scale (% in a physical
process. So, while the on-shell scheme directly connects with physical mass and
charge, when Q2 is large perturbation theory will converge best in schemes like the

MS or MS with the renormalization scale i chosen such that p? ~ Q2.

Renormalizing with dimensional regularization: To implement calculations of renormalized
perturbation theory with dimensional regularization requires a considerable amount of
machinery. Some of these tricks and needed results are shown on the following pages. The
calculations require some effort.

sssssssssssssss
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Feynman parameterization
(See Appendix, Sec A.5)

To simplify the evaluation of loop integrals in perturbation theory there are a
number of useful identities as we will see in Sec. A.6. The simplest of these is

1 ! —1 ! 1
:/ dzxidxo O+, )2 :/ dx 5 - (A.5.1)
A1A2 0 [SIZlAl—I—CIJQAQ] 0 [CBAl—i—(l—l‘)Ag]

The parameters x1, 2, and = are all referred to as Feynman parameters. The proot

of this result is straightforward from right to left using

1 a+b a+b
1 1 1 1 1 1
/0 " oz + 02 a/b Y a[ y]b (a+b)b 452

where we have used the change of variable y = ax + b and where we identify
a = (A1 — As) and b = A,y. After differentiating Eq. (A.5.1) ny — 1 times with
respect to A; and ny — 1 times with respect to A we immediately obtain

1 C(nitna) [ ) !
A AT — T ()T (1) /0 dxidzs (21422 —1) Ay LAy (A.5.3)
since
dn1+n2_2 1 ni—+ng—2 (n1—1>'(n2—1)'
dAnl_ldAn2_1 A1A2 — (_1) AqflA;Q , (A54)
1 2
g 1 B | e

= (—1
qufl_ldA?_l (X1 A1 +x2A5]? (=1)

(11 A1+ a0 Ag|n1 72
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Dimensional regularization
(See Appendix, Sec A.6)

Evaluating loop integrals in d-dimensions: The following Minkowski-space
results are useful,

dt 1 [i(=D*]T(a—9) (1 a=j

/(27T)d ((2—a2)> [(47r)d/2] () (az) (A.6.4)
di 2 Ti(=1)*]dl(a=g-1) [ 1\* 2!

/(27‘(‘)d (62_(12)@ o _(47T)d/2_ 2 F(Oz) (ag (A.6.5)
Fe e i) g Da—do) (1) E

/(27‘r)d (52_02)04 - _(47T)d/2_ 9 T(c) ?) (A.6.6)
a0 ()2 [i(=1)*] dd+2)Ta—2-2) (1\* %

/(27‘(‘)d (52—0,2)04 o _(47‘(‘)d/2_ 4 F(Oz) (?) (A67)
d'e e [i(-1)*) 10(a—§-2) (1)

/(27‘(‘)d (62_a2)a o _(47T)d/2_ Z F(O&) (?)

x[9"g" +9"g" +g"7g""] . (A6.8)

These results are most easily shown by Wick rotating to Euclidean space, where
d — id¥F, (02 —a?) — — (€2 4+ a?) as explained in Sec. A.4. Useful formulae for
arriving at the above results for convergent integrals are

[dde erer f(0%) = [de % 02 ghv £ (02), (A.6.9)

2
[dde ereveree f(62) = [d*e (d+12)d (62) (g gP° + gH¥ gPo +gH¥ gP? £(£?). (A.6.10)
Note that for an odd number of momenta ¢#¢¥ --- such integrals vanish, while for

any even number, 2n, we must have a completely symmetrized sum of n factors of
the metric tensor g"”, where the appropriate normalization can be deduced.

sssssssssssssss
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Dirac algebra in d = 4 — € dimensions
(See Appendix, Sec A.6)

When extending from integer, n € Z, to noninteger spacetime dimensions, d € R,
we define the contraction identities with n replaced by d =4 — ¢,

Vo =WE@—l, Yly=—-2=)k, VK. =42k -l—ckf,
VR =2 kel fY. (A-6:19)

The trace identities can be generalized to trl = f(d) and tr(v#v") = f(d)g"”, where
f(d) is some arbitrary smooth function of d (Itzykson and Zuber, 1980) such that
f(n) = nmatrix- We will almost exclusively be interested in analytically continuing
from n = 4 dimensions to d = 4 — € dimensions. Without loss of generality it is
convenient to choose f(d) =4 for d = 4 — € so that, e.g.,

trl =4, try" =0 and tr(y#~") = 4gM" . (A.6.20)

It is important to use g"g,, = 0*, = d before taking e — 0. These choices have
the advantage that the trace identities in d = 4 — € dimensions are the same as they
are in four-dimensions, i.e., the identities in Eqs. (A.3.24) to (A.3.29) still apply.

The definition of ~° is intrinsically four-dimensional due to its definition in terms
of the four-dimensional antisymmetric tensor e**?? in Eq. (A.3.5). A variety of
recipes for defining 7° in d-dimensions exist, (see, e.g., Chanowitz et al. (1979);
Fujii et al. (1981) and references therein). However, common practice Muta (1987);
Yndurdin (1983) is to simply assume that in d-dimensions there exists some hermi-
tian matrix v°> which satisfies

(4" =0, P =+"T, ()P =1I. (A.6.21)

sssssssssssssss
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Example calculation of one-loop photon contribution
(See Chapter 8, Sec 8.7.3)

15 (g) —@m+m®m (8.7.26)

e dd€ v(f+m)yHe(f+ g+m)y” . v,V
(=) (—w /2qc)2/(27r)d tr [[(e—l(—g)2—)ﬂz2—|—(f€][g2—m);—|—ie] _Z(QQQM —q"q")03
e[ A ()" (U4 g mP =L))o
= 4y 2/( (g2 —m+id [P — mzﬂ-e] ~i(¢*g""~q"q")d3

1 dd€ CH(L4q)Y +£7 (L+q)* +gH [m2—L-(L+q)]

— —4p° d (A2 pv oV 5
v 0 g {024-22q-0+2q?> —m?+ie}? ia"g™=a"a")0s
. 1 ddf’ 20141 — gtV 2 —2x(1—x) gt q” +g*Y [m* +2(1—2)g* ]|+ O¢)
= —4v°q’ [ dx :
0 {02 +x(1—x)g?—m?+ie}?

—i(q*g""—q"q" )3

4@'”6]3/233 D= g)le*g" 4221 =2)g"q'=g" @mP=a)Y] 2 s
(4m)d/2 ], {a212-(d/2) 9" —q"q )o3
_ divcg /1d$ r(2—2)2z(1 — 2)[-¢*9""+q¢"q"]

(4m) 372 J (m? — z(1—2)g2}2—(d/2)

—i(q*g""—q"q" )03

g g | ST [, TRy a1~ )
= —i|qg"g""—q"q"] (4W>d/2/ T (m2 — 2(1—2)g2)2- (/2

2 1\ 2
= —i[¢*g""—q"q"] ch dxaz(l x){g—ln (m xEl l >}+53]

| Am ), € Iz
= —ilg"g""—¢"q"M2(q%),

Note: Dimensional regularization has preserved the Ward identity g, [1** = 0 as we wanted!

+ 03

3 THE UNIVERSITY

) “ADELAIDE
RN

Foundations of QFT, ANU Summer School, 2023



Running coupling and running mass in QED
(See Chapter 8, Sec 8.7.5)

FInally: We state without the detailed proofs two very important results from one-loop calculations in
QED. First the running coupling a(u) increasing logarithmically with scale u below and on the following
page running mass m(u) logarithmically decreasing with scale y.

1

) = [y Jan]{ [ Boa ()] (2 T In (i)}
4 Am gl

" Bo{ln(})—In(A2pp)}t  Bom(u2/Adwp)  Boln(uy/Aqep)

where the first line shows that [47/Boa(pe)] — In(x?) must be independent of i,
and so it can be replaced with [47/Bya(m,)] —In(m?2) = — In(Aqep). This is a very
powerful one-loop result that shows that: (i) since Sy = —4/3 < 0 and ¢ < Agep
then a(u) increases with increasing renormalization scale; and (ii) the coupling at
scale p is determined by the location of the Landau pole, Aqrp. Since a(u) =
e(u)?/4r > 0 and By < 0 then Eq. (8.7.72) can only be valid when u < AqQgp,
which means that In(u/Aqgep) < 0 for all relevant p. The effective replacement of
the dimensionless coupling o with a dimensionful scale Aqgrp is sometimes referred

(8.7.72)

to as dimensional transmutation. Using this formula we find that the value of the
fine structure constant at the Z-boson mass is approximately amaive(Mz) ~ 1/134.
However, at high-momentum scales we should also include the photon coupling to

more massive charged particles including the p and 7 leptons, the quarks and the
W ¥ bosons. The measured value at Mz is a(My) ~ 1/128.

Note: Aqgp ~ 107%% eV and so we are not going to easily access this scale!
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Running coupling and running mass in QED
(See Chapter 8, Sec 8.7.5)

_3//80 _3//30

_ [ama)] _ [ama)r/{ (8.7.75)

m(pp) _ IH(M%/A%QED)
m(fia) 1n(“3/A2QED)

rrrrrrrrrrrrrrr

SUBAT@Q)MIC .
@ @i Foundations of QFT, ANU Summer School, 2023

3 THE UNIVERSITY

&0, YADELAIDE 19

HYSICS



