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Physical	spectrum	of	states	
(See	Chapter	7,	Sec	7.1)
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Physical spectrum of states: We can build a mixed Fock space in terms of the full vacuum , 
physical singe-particle states and the different bound states of the full interacting theory. This is a Fock 
space constructed from free single particles of mass  and free bound states of masses ,  and so 
on. Denote this Fock space as  and the full Hilbert space of the interacting theory as .  Let  
denote a single particle or a stable bound state in an on-shell momentum eigenstate in the full theory. 
Then clearly for all  we have 

 . 

Cluster decomposition principle: In the above discussion we are implicitly assuming that when stable 
particles and/or stable bound states have spacelike separations approaching infinity, then we can neglect 
their influence on each other. This is a familiar property of physical systems. Were it not the case, then to 
describe the behavior of any system we would have to describe the behavior of the whole universe. All 
systems of physical relevance satisfy this principle.
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Källen-Lehmann	spectral	representaIon	
(See	Chapter	7,	Secs	7.1	and	7.2)
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Källen-Lehmann spectral representation: We can define the full propagator of the interacting theory as 

 

where the last line defines the momentum-space full propagator , [see the proof of Eq. (7.2.9)]

DF(x − y) ≡ ⟨Ω |T ̂ϕ(x) ̂ϕ(y) |Ω⟩ = ∫ d4p
(2π)4 [ ∫ ∞

0
ds iρ(s)

p2 − s + iϵ ] e−ip⋅(x−y) ≡ ∫ d4p
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In the complex -plane we have poles at single particle and bound state masses and branch cuts starting 
at multi particle production thresholds. We then have 

s

ρ(s) = Zδ(s − m2) + [bound state δ-functions]
+[2-particle part for s ≥ (2m)2] + [3-particle part for s ≥ (3m)2] + ⋯ .
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ScaJering	matrix	
(See	Chapter	7,	Sec	7.3)
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Definition of the -matrix: The Scattering Matrix (S-matrix) is defined through its matrix elements  as 
 , 

where to describe scattering  and  are Heisenberg picture states. In particular they are chosen to 
be states that describe sets of particles in wave packet states separated by arbitrarily large spatial 
distances. So if the cluster decomposition principle holds then they approach wave packet states in the 
non-interacting Fock space, because interactions between the wave packets become negligible at large 
spatial separations. Then such  and  in the full theory are asymptotically close to their Fock space 
versions. 

Taking the infinite separation of the wave packets limit first, we can then after that let the wave packets 
become sufficiently broad that they approach plane wave states. In summary, we work in the limit where 

 and   
with an -particle initial state of approximate plane waves and an -particle final state of plane waves 
both in the Fock space. The order of the limits is important to remember. 

The Transition Matrix (T-matrix): It is conventional to separate the -matrix operator  into a part where 
no transition takes place, , and a part where transitions occur, , 

 . 
The factor of  in the  operator definition is conventional. The  are the elements of the -matrix, which 
is also referred to as the transition matrix or transfer matrix. We understand that  and assumes 
unit  normalization for our states.

S Sfi
Sfi ≡ ⟨ f | lim

T→∞
Û(T, − T ) | i⟩ = ⟨ f | ̂S | i⟩

| i⟩ | f ⟩

| i⟩ | f ⟩

| i⟩ → |p1⋯pm⟩F | f ⟩ → |k1⋯kn⟩F

m n

S ̂S
̂I i ̂T

̂S ≡ ̂I + i ̂T and Sfi = δfi + iTfi
i ̂T Tfi T

δfi ≡ ⟨ f | i⟩
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Invariant	amplitude	
(See	Chapter	7,	Sec	7.3)
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Definition of the invariant amplitude : Now consider an initial state consisting of two particles with 
masses  and   and three-momenta  and  so that   and a final state consisting of 

 particles with masses  and three-momenta  so that  . In a 
Poincaré-invariant system we have four-momentum conservation and we can factor out a momentum 
conserving delta-function such that 

 , 

where  and  and  is called the invariant amplitude or invariant matrix 
element. We are initially consider scalar (no spin) particles for simplicity. 

Using a simple shorthand we see that in all cases where  we have 

 

where we have used the result that in any regularization of the spacetime volume we have the 
correspondence , where  is the finite spatial volume and  is a finite time 
interval. We emulate the scattering problem in a finite spacetime volume and then take the infinite volume 
limit, but we will omit that detail here. 

The invariant amplitude  plays an essential role in the calculation of physical cross-sections as we will 
soon see.

ℳ
mA mB pA pB | i⟩ = |pApB⟩

n m1, …, mn p1, …, pn | f ⟩ = |p1⋯pn⟩

Tfi =⟨ f | ̂T | i⟩ ≡ (2π)4δ4(pA+pB−∑n
i=1 pi)ℳfi

i=(pA, pB) f =(p1, …, pn) ℳfi

f ≠ i
|⟨ f | ̂S | i⟩ |2 = |⟨ f | ̂T | i⟩ |2 = (2π)8δ4(0)δ4(pA+pB−∑n

j=1 pj) |ℳfi |
2

= (VΔT )(2π)4δ4(pA+pB−∑n
j=1 pj) |ℳfi |

2 ,

(2π)4δ4(0) → (VΔT ) V ΔT

ℳfi
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Cross-secIon	
(See	Chapter	7,	Sec	7.3.1)
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Classical cross-section: Classically the cross-section  of an object is the two-dimensional area it 
presents in a direction orthogonal to an incident beam of light or particles as shown below. 

Measuring the cross section: Let  denote the flux of the incident beam, which is defined as the 
number density of the beam  multiplied by the beam velocity , 

 
 is the number of beam particles passing though a unit area orthogonal to the beam per second. The 

current of incident particles on an area  orthogonal to the beam is . 
The number of particles scattered is  and the number scattered per unit time by the target is the 
scattered current, , which is also called the scattering rate, , so by definition 

 . 

The total cross-section, , is defined as, 

 . 

In classical physics every beam particle that hits the object will scatter. 
So we have  and so classically we have 

 . 

which is why we refer to  as a cross-section even in quantum mechanics. It has the units of area. 
The total cross-section  is the effective area of the beam that is scattered. It is also the effective 
scattering area of the target seen by each particle in the beam.  
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Φ
ρ v
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Φ
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σ
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=
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Φ
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=
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DifferenIal	cross-secIon	
(See	Chapter	7,	Sec	7.3.1	and	7.3.2)
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Diverging cross-sections: Consider a beam of charged particles scattering off of some charged target. 
Since the Coulomb potential has an infinite range, classically every particle in the beam will be deflected. 
Beam particles increasingly far from the target will be deflected by decreasing amounts. The “forward 
scattering” component of the cross-section of the beam then diverges as . Even for finite range 
interactions the unscattered beam is in the forward direction and so it is not meaningful to measure very 
forward (or very backward) scattering for this reason. So we typically study the differential cross-section, 
where final-state particles are not moving forward or backward along the beam axis but instead scatter 
into some finite solid angle  not containing the beam axis. 
Differential cross section: We then define the differential cross-section as 

 . 

We sometimes also refer to  as the differential of the cross-section. We obviously have  

 . 

Similarly the variation of the cross-section with any combination of kinematic variables is said to be a 
differential cross-section, e.g.,  for any kinematic variables  and  and so on. 

Relating the cross-section to the -matrix and the invariant amplitude : It is not possible to do this 
justice here. A thorough discussion is given in Sec. 7.3.2. We simply give the result, which is that 

 ,   includes all final states  

where we are assuming that a beam of  particles with velocity  collides collinearly with a beam of  
particles with velocity , i.e.,  is the relative speed of the oppositely approaching beams.

θ → 0

Ω

dσ
dΩ

≡
# of scattered particles/sec/unit solid angle
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=

1
Φ
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σ = ∫ dΩ
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= ∫
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0
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S ℳ
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n

∏
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Two-body	scaJering	&	Mandelstam	variables	
(See	Chapter	7,	Sec	7.3.4)
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585 Scattering cross-sections and decay rates

The usefulness of these parameters is that when the interaction is mediated or
dominated by the exchange of a single particle (shown as a dashed line with four-
momentum qµ) then s, t and u are the four-momentum squared, q2, of the exchanged
particle in each case. We refer to these exchanges as being in the s-channel, t-channel
and u-channel respectively. Recall the derivation in Sec. 2.6 of the conservation of
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tFigure 7.10
Two-body scattering and Mandelstam variables: s = (p1 + p2)2, t = (p1 � p3)2 and
u = (p1 � p4)2.

four-momentum, which gives pµ
1 + pµ

2 � pµ
3 � pµ

4 = 0. Using this we have for the
s-channel qµ = (pµ

1 + pµ
2 ) = (pµ

3 + pµ
4 ) and s = q2, for the t-channel we have

qµ = (pµ
1 � pµ

3 ) = (pµ
4 � pµ

2 ) and t = q2, and for the u-channel we have qµ =
(pµ

1 �pµ
4 ) = (pµ

3 �pµ
2 ) and u = q2. Note that s = p2

1+p2
s +2p1 ·p2, t = p2

1+p2
3�2p1 ·p3

and u = p2
1 + p2

4 � 2p1 · p4. Summing these we find

s + t + u = m2
1 + m2

2 + m2
3 + m2

4 + 2p2
1 + 2p1 · p2 � 2p1 · p3 � 2p1 · p4

= m2
1 + m2

2 + m2
3 + m2

4 + 2p1 · (p1 + p2 � p3 � p4)

= m2
1 + m2

2 + m2
3 + m2

4 . (7.3.76)

For two particles scattering into a two-particle final state, 1 + 2 ! 3 + 4, we have
in any collinear inertial frame,

d� =
|Mfi|2

4E1E2|v1 � v2|
d⇧LIPS

2 =
|Mfi|2

4F
d⇧LIPS

2 ,

d⇧LIPS
2 ⌘ (2⇡)4�4(p1+p2�p3�p4)[d3p3/(2⇡)32Ep3 ][d

3p4/(2⇡)32Ep4 ] . (7.3.77)

CM frame: Consider two-body scattering in the center-of-momentum (CM)
frame3, which is an inertial frame in which the total three-momentum vanishes. We
can always perform a Lorentz boost to the CM frame. The two-body CM energy is
given by

p
s, since in the CM frame p1 = �p2 and so

s = (p1 + p2)
2 = (E1 + E2)

2 + (p1 + p2)
2 = (E1 + E2)

2 = E2
cm . (7.3.78)

3 This is also sometimes referred to as the “center-of-mass frame”. Strictly speaking the center-of-
mass for a system is a point defined classically in Eqs. (2.1.2) and (3.2.81). Center-of-momentum
refers to an inertial frame in which all relativistic three-momenta sum to zero.

LIPS: Lorentz invariant 
phase space (LIPS) 
consists of products of the 
Lorentz invariant 
combinations  
and the Lorentz invariant 
four-momentum delta 
function  and its 
companion factor .

d3p/Ep

δ4(⋯)
(2π)4
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Two-body	scaJering	
(See	Chapter	7,	Sec	7.3.4)
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Center of Momentum (CM) frame: In this frame we have by definition 
 

and it follows that  
 . 

Defining  we obtain the form 

 

Fixed-target (laboratory) frame: In the fixed target frame, where particle 1 is the beam particle and 
particle 2 is the target particle at rest we have . In that case we find 

   where here   .

pcm
i ≡ |p1 | = |p2 | and pcm

f ≡ |p3 | = |p4 |

s = (p1 + p2)2 = (E1 + E2)2 − (p1 + p2)2 = (E1 + E2)2 = E2
cm

dΩ = dθ sin θ dϕ = dϕ d(cos θ)

( dσ
dΩ )

cm
=

|ℳfi |
2

4pcm
i s

pcm
f

16π2 s
=

1
64π2s

pcm
f

pcm
i

|ℳfi |
2 .

p2 = 0
dσ
dΩ

=
1

64π2

1
p1m2

p2
3

p3(m2 + Ep1
) − p1Ep3

cos θ
|ℳfi |

2 p1 ≡ |p1 | and p3 ≡ |p3 |
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tFigure 7.11
Two-body scattering: a) in the Center of Momentum (CM) frame; and b) in the
fixed-target frame.

Four-momentum conservation also gives p3 = �p4 and
p

s = E3 + E4 = Ecm.
Defining p3 ⌘ |p3| the integral over two-particle phase space in the CM frame is

R
d⇧LIPS

2 =
R

(2⇡)4�4(p1+p2�p3�p4)[d3p3/(2⇡)32Ep3 ][d
3p4/(2⇡)32Ep4 ] (7.3.79)

=
R

(2⇡)�(Ep1 +Ep2 �Ep3 �Ep4)[d
3p3/(2⇡)32Ep32Ep4 ] |p3+p4=p1+p2=0

=

Z
d⌦p3 dp3 p2

3

(2⇡)32Ep32Ep4

(2⇡)�(Ep1 +Ep2 �Ep3 �Ep4)|p3+p4=p1+p2=0

=

Z
d⌦p3 p2

3

16⇡2Ep3Ep4

����
p3

Ep3

+
p3

Ep4

����
�1

�����
p3+p4=p1+p2=0

=

Z
d⌦p3

16⇡2

|p3|p
s

����
p3+p4=p1+p2=0

,

where p1 and p2 are fixed, where we have used Eq. (7.3.62) with p4 = �p3 and
where

p
s = Ep3 + Ep4 = Ep1 + Ep2 = Ecm. Defining

pcm
i ⌘ |p1| = |p2| and pcm

f ⌘ |p3| = |p4| . (7.3.80)

the CM invariant Møller flux factor can be written as

F = Ep1Ep2 |v1 � v2| = Ep1Ep2 [(p
cm
i /Ep1) + (pcm

i /Ep2)]

= pcm
i (Ep2 + Ep1) = pcm

i

p
s = pcm

i Ecm . (7.3.81)

Since outgoing particles 3 and 4 move away from the collision region back to back
we only need to specify the direction of one and so we write d⌦ ⌘ d⌦p3 as the
corresponding infinitesimal solid angle. From Eq. (7.3.77) the CM di↵erential cross
section is then given by (Thomson, 2013)

✓
d�

d⌦

◆

cm

=
|Mfi|2

4F
d⇧LIPS

2 =
|Mfi|2
4pcm

i

p
s

pcm
f

16⇡2
p

s
=

1

64⇡2s

pcm
f

pcm
i

|Mfi|2 . (7.3.82)

Note that d⌦ = d✓ sin ✓ d� = d� d(cos ✓) with ✓ and � defined in Fig. 7.11. In
the case of spinless particles we will have azimuthal (cylindrical) symmetry around
the collinear beam direction, which means �-independence. In that case we can
integrate over � and pick up a factor of 2⇡ to give

✓
d�

d(cos ✓)

◆

cm

=
1

32⇡s

pcm
f

pcm
i

|Mfi|2
all masses equal����������! |Mfi|2

32⇡s
, (7.3.83)



Foundations	of	QFT,	ANU	Summer	School,	2023

Unitarity	of	the	 -matrix	&	the	OpIcal	theorem	
(See	Chapter	7,	Sec	7.2)
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Unitarity of the -matrix: Consider any complete orthonormal basis of the full Hilbert space with basis 
vectors , then   and . Then  and so  is unitary since 

 

Since  then  
 . 

Then choosing  we find the important result that    . Note that we sum over the 

full basis but we can choose any  specific  or linear combination of interest.  

Moving to our continuous basis the orthonormality and completeness become 

 

We then arrive at the result illustrated in the above figure. It can be used to simplify some calculations. 
 .           

S
| i⟩ ⟨ j |k⟩ = δjk ∑j | j⟩⟨ j | = I S† = S−1 S

(S†S)jk = ∑ℓ S†
jℓSℓk = limT→∞ ∑ℓ ⟨ j | Û(T, − T )† |ℓ⟩⟨ℓ | Û(T, − T ) |k⟩

= lim
T→∞

⟨ j | Û(T, − T )†Û(T, − T ) |k⟩ = ⟨ j |k⟩ = δjk .

I = S†S = (I − iT†)(I − iT ) = I + i(T − T†) + T†T
−i(T − T†) = T†T ⇒ − i(Tjk − T*kj) = ∑ℓ T*ℓjTℓk

j = k 2 Im Tjj = ∑ℓ |Tℓj |
2

| j⟩

⟨ j |k⟩ = δjk → ⟨p1⋯pn |q1⋯qm⟩ = δnm(2π)3n(2Ep1
)⋯(2Epn

)δ3(p1 − q1)⋯δ3(pn − qn) ,

̂I = ∑ℓ |ℓ⟩⟨ℓ | → ̂I = ∑n ∫ [∏n
k=1

d3pk

(2π)32Epk
] |p1⋯pn⟩⟨p1⋯pn | .

2 Im ℳpApB→pApB
= ∑n ∫ dΠLIPS

n |ℳpApB→p1⋯pn
|2 ← the Optical Theorem
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where d⇧LIPS
n is defined in Eq. (7.3.101) and where the second line is the graphical

representation of the first. From Eq. (7.3.44) we have for the channel AB ! n
particles in any collinear frame

�AB!n =
R

d⇧LIPS
n |Mfi|2/4F . (7.3.103)

Then the total cross-section for AB ! X in any collinear frame is given by

�tot ⌘ �AB!X =
P

n �AB!n =
P

n

R
d⇧LIPS

n |MpApB!pApB |2/4F

= Im MpApB!pApB/2F = Im MpApB!pApB/2pcm
i Ecm , (7.3.104)

which is referred to as the Optical Theorem. Recall from Eq. (7.3.81) that in the
CM frame we have F = pcm

i

p
s = pcm

i Ecm, where in this frame |pA| = |pB | ⌘ pcm
i .

In quantum field theory we often also refer to Eq. (7.3.102) as the optical theorem.
The Optical Theorem has a long history in optics and quantum mechanics and a
concise summary of this along with references can be found in Newton (1976). Its
derivation in terms of partial waves is included in most quantum mechanics courses,
where it takes the form �tot = (4⇡/k)Im f(✓,�) with f(✓,�) defined in Eq. (7.3.12).

7.4 Interaction picture and Feynman diagrams

The discussion of the interaction picture in quantum mechanics in Sec. 4.1.11 applies
immediately to quantum field theory, since we will have a Schröding picture Hamil-
tonian operator, Ĥs, with a free part, Ĥ0, and an interaction part, Ĥint in a Hilbert
space, with Ĥs = Ĥ0 + Ĥint. As above, Ĥ0 will always be be time-independent and
will be chosen to be the sum of one or more free field theory Hamiltonians. In this
section we will see how the interaction picture leads to Feynman diagrams.

7.4.1 Interaction picture

The interaction part Ĥint can be a self-interaction of a field, an interaction between
two or more fields, the interaction with an external source or a combination of
these. When the interaction does not include any external sources then Ĥint will
be time-independent and so Ĥs will be time-independent. If one or more external
sources are present then there will be explicit time-dependence and Ĥint(t) and
hence Ĥs(t) will depend on time. Examples of coupling to external sources were
given in Chapter 6. We typically define the source to strictly vanish outside of an
arbitrarily large but finite time interval, j(x) = 0 for |t| > Tj for some arbitrarily
large time Tj .



Foundations	of	QFT,	ANU	Summer	School,	2023

Invariant	amplitudes	from	Feynman	diagrams	
(See	Chapter	7,	Secs	7.4	and	7.5)

11

Calculating Green’s functions with Feynman diagrams: See Sec. 7.4 for full details. With some effort 
it is possible to show that 

 

Calculating invariant amplitudes with Feynman diagrams:   Then using the Lehmann-Symanzik-
Zimmermann (LSZ) formalism it follows that we obtain invariant amplitudes  by amputating the 
external legs of the sum of all Feynman diagrams contributing to the Green’s function for this process.  

                                                                                                                                                                               

We can not possibly do justice to a proof of the LSZ formalism here but a full derivation and discussion 
for scalars, fermions and photons is given in Sec. 7.5. Given that it now remains to show how to calculate 
with Feynman diagrams using the Feynman rules that can be derived for each theory of interest. We do 
not derive the Feynman rules for each theory here, but is is relatively straightforward to do from the 
interacting theory Lagrangian density  using the functional integral expressions.

⟨Ω |T ̂ϕ(x1)⋯ ̂ϕ(xn) |Ω⟩ =
∫ 𝒟ϕ ϕ(x1)⋯ϕ(xn) eiS[ϕ]

∫ 𝒟ϕ eiS[ϕ]
=

(i)nδk

δj(x1)⋯δj(xn)
Z[ j]

j=0

= ∑α Cα = [ sum of all connected Feynman
diagrams with n external points] ≡ G(n)(x1, ⋯, xn) .

ℳfi

ℒ

612 Interacting Quantum Field Theories

by acting on it with inverse on-shell propagators. All but the one-particle pole parts
of G(m+n) will vanish since the inverse propagators vanish at the poles.

The LSZ reduction formula in Eqs. (7.5.28) and (7.5.35) and its generalizations
are key results that will underpin the calculations of scattering amplitudes and
cross-sections in quantum field theory. For additional details regarding the LSZ
reduction formula see some of the original papers (Lehmann et al., 1955; Yang
and Feldman, 1950) and also discussions in Bjorken and Drell (1965); Itzykson
and Zuber (1980); Greiner and Reinhardt (1996); Peskin and Schroeder (1995) and
other texts. The LSZ reduction formula is then combined with Eq. (7.4.13), which
expresses the Green’s functions of the full theory in terms of the interaction picture,
where the Green’s function are to be evaluated using Eq. (7.4.48) and the rules for
evaluating Feynman diagrams developed in Sec. 7.4.2. A major issue that remains
to be addressed, is the program of renormalization needed to manage the apparent
infinities arising from loops in Feynman diagrams.

Amputated and one-particle irreducible amplitudes

 

Amputated  G(n) =

 

 G(n) 
 

amp (7.5.37)

An n-point Greens’s function G(n)(x1, · · ·, xn) is shown on the left-hand side of
Eq. (7.5.37). As we know from Eq. (7.4.48) we can evaluate G(n)(x1, · · ·, xn) as
the sum of all connected Feynman diagrams with n external points. Note that
propagators in the Feynman diagrams are the bare Feynman propagators, denoted
D0(x � y), that contain the bare mass m0 and not the physical mass m,

D0(x � y) ⌘
Z

d4p

(2⇡)4
i

p2 � m2
0 + i✏

e�ip·(x�y) ⌘
Z

d4p

(2⇡)4
D0(p)e�ip·(x�y) . (7.5.38)

The Fourier transform G(n)(p1, · · ·, pn) can similarly be obtained as the sum of these
Feynman diagrams evaluated in momentum space. A comparison of Eqs. (7.5.34)
and (7.5.35) shows that our definition of G(n)(p1, · · ·, pn) corresponds to all mo-
menta p1, . . . , pn flowing outward.

Consider any arbitrarily complicated connected n-point Feynman diagram con-
tributing to G(n). Choose any external point, say x1, and follow the connected
diagram inward until reaching the furthest point of the last bare Feynman propa-
gator that when cut would disconnect x1 from the rest of the diagram. Then repeat
this process for each of x2 to xn. The n-point diagram that lies inside of each of
these n cut points has no external bare Feynman propagators and is referred to
as an amputated Feynman diagram. The sum of all connected amputated Feynman

 is the FT of  
 

We then use LSZ to convert the  into  by 
attaching appropriate external states for the  and  .

G(n)(p1, ⋯, pn) G(n)(x1, ⋯, xn)
G(n)

amp(p1, ⋯, pn) = D−1
F (p1)⋯D−1

F (pn) G(n)(p1, ⋯, pn)

G(n)
amp ℳfi

f i
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Scalar field with quartic self-interaction: 

 

Yukawa interaction: 

 

Quantum electrodynamics (QED): 

 

ℒ = ℒ0 + ℒϕ4
int = ℒKG + ℒϕ4

int = 1
2 [∂μϕ∂μϕ − m2ϕ2] − (λ /4!)ϕ4 ,

H = H0 + Hϕ4
int = HKG + Hϕ4

int = HKG + ∫ d3x(λ /4!)ϕ4 .

ℒYuk
int (ϕ, ψ̄, ψ) = − ℋYuk

int (ϕ, ψ̄, ψ) ≡ − gψ̄ϕψ or −gψ̄ iγ5ϕψ ,

ℒ = ℒ0 + ℒYuk
int = ℒKG + ℒDirac + ℒYuk

int = ℒKG + ψ̄(i /∂ − mf )ψ + ℒYuk
int ,

ℋ = ℋ0 + ℋint = ℋ0 + ℋYuk
int = ℋKG + ℋDirac + ℋYuk

int .

ℒ = ℒ0 + ℒQED
int = ℒDirac + ℒMaxwell + ℒQED

int

= [ψ̄(i /∂ − m)ψ] + [− 1
4 FμνFμν] + [−qcψ̄ /Aψ] = ψ̄(i /D − m)ψ− 1

4 FμνFμν ,

ℒQED
int (Aμ, ψ̄, ψ) ≡ − qcAμ jμ

Dirac = − qcAμψ̄γμψ = − qcψ̄ /Aψ , Dμ ≡ ∂μ + iqcAμ ,
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QED as a gauge theory:  The Dirac action is invariant under a global phase transformation, 
. Using Noether's theorem leads to the conserved fermion current  . 

as we saw earlier. Combine a local phase transformation  of the fermion field and a 
simultaneous gauge transformation of the photon field (no change to   and ),  

      gauge transformation in QED 

We refer to these two combined transformations as a gauge transformation of  the theory. We note that 
 and   

and so we say that QED is gauge invariant. Since  is an element of  we say that QED is a  
gauge theory and hence abelian. Since  is abelian we say that QED is an abelian gauge theory. 

Nonabelian gauge theories: This illustrates how to produce a gauge theory from a non-gauge theory:  
(i) turn a global phase invariance into a local one;  (ii) introduce gauge fields and a corresponding 
covariant derivative ; (iii) the resulting theory is invariant under the combined gauge 
transformation for  and .  

If the global phase invariance is  with  the matrix generators of some nonabelian Lie group, then 
we will arrive at a nonabelian gauge theory using this construction, e.g, quantum chromodynamics is the 
nonabelian gauge theory corresponding tp  associated with quark and gluon color with the  as 

 matrix representation of  matrices. Then  and . 
See Chapter 9, Sec 9.1 and Georgio’s lectures for details.

ψ(x) → eiαψ(x) jμ
Dirac = : ψ̄γμψ :

ψ(x) → eiα(x)ψ(x)
E B

ψ(x) → ψ′ (x) = eiα(x)ψ(x) , ψ̄(x) → ψ̄′ (x) = e−iα(x)ψ̄(x) ,
Aμ(x) → A′ μ(x) = Aμ(x) − (1/qc)∂μα(x) .

←

Ψ̄′ (i /D′ − mf )Ψ′ = Ψ̄(i /D − mf )Ψ F′ μνF′ 
μν = FμνFμν

eiα U(1) U(1)
U(1)

Dμ = ∂μ + igAμ
ψ Aμ

ei ⃗ω ⋅ ⃗T Ta

SU(3) Ta

3 × 3 SU(3) Aμ ≡ Aa
μTa ψ = (ψ1, ψ2, ψ3) = (ψr, ψb, ψg)
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631 Feynman rules

function in the LSZ formalism to bring together the operators to be contracted into
lines. We will consider examples of this in Sec. 7.6.3.

Identical particles in the final state: For n identical final-state particles
include a factor of 1/n! in d⇧LIPS

n in Eq. (7.3.41) so as not to overcount final states.
Divide diagrams by their symmetry factor: Calculate the symmetry factor

S for each Feynman diagram according to the principles discussed in Sec. 7.4.2.
Divide the contribution of each Feynman diagram by its symmetry factor S.

Add a minus sign for fermion loops: When a Feynman diagram contains a
fermion loop it comes with a minus sign and the loop contribution has the form

(�1)tr[S0�S0� · · · �S0] (7.6.1)

with the �’s being appropriate spinor matrices and with the bare propagators ordered
from right to left in the direction of the fermion arrow in the loop. If the theory
has more than one type of fermion interaction then the �’s may be mixed. To
understand this result note that any fermion interaction that we will consider will
be of the form  ̄(x)� (x) =  ̄↵(x)�↵� �(x) for some spinor matrices �. A fermion
loop will occur when a group of interaction terms  ̄� are fully contracted within
themselves, i.e., there is no contraction with a fermion operator associated with an
external fermion or antifermion. For example, consider a loop contraction of three
interaction terms remembering that we are in the interaction picture,

h0|T · · · ˆ̄ ↵1
(x1)�↵1�1  ̂�1(x1)

ˆ̄ ↵2
(x2)�↵2�2  ̂�2(x2)

ˆ̄ ↵3
(x3)�↵3�3  ̂�3(x3) · · · |0i

=�h0|T · · ·  ̂�3(x3)
ˆ̄ ↵1

(x1)�↵1�1  ̂�1(x1)
ˆ̄ ↵2

(x2)�↵2�2  ̂�2(x2)
ˆ̄ ↵3

(x3)�↵3�3 · · · |0i
= (�1)tr [S0(x3 � x1)�S0(x1 � x2)�S0(x2 � x3)] h0|T · · · |0i , (7.6.2)

with the fermion arrow in the orientation x3 ! x2 ! x1 ! x3. The minus sign
arises since the fermion operators anticommute in the time-ordered product. We
have used Eq. (7.5.94). Since all topologically distinct attachments to the loop must
be summed over only one orientation of the fermion loop should be included.

(scalar in)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= 1 (scalar out)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= 1 (7.6.3)

(fermion in)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= us(p) (fermion out)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= ūs(p)

(antifermion in)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= v̄s(p) (antifermion out)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= vs(p)

(photon in)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= ✏µ(p,�) (photon out)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= ✏µ(p,�)⇤

(charged
scalar in)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= 1
(charged
scalar out)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= 1

(anti-charged
scalar in)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= 1
(anti-charged

scalar out)

p
p p

p p p p p p

p p p p

p p p p p p

� = ige�
µ URV

k

p1p2

R

= 1 .
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Since the charged scalar field is just the superposition of two real scalar fields the
external state is the same as for the neutral scalar. The arrow on the charged scalar
indicates the flow of the charge. For the massive vector boson we use the same
symbol as for the photon line,

p
p p

p p p p p p

p p p p

p p p p p p

p

� = ige�
µ URV

k

p1p2

R

and ✏µ(p, �) has three polarization states
rather than two. For the charged massive vector boson we add an arrow as for
the charged scalar,

p
p p

p p p p p p

p p p p

p p p p p p

p

� = ige�
µ URV

k

p1p2

R

, and since it is the superposition of two real massive
vectors it again has ✏µ(p, �) with three polarizations. Some texts omit the arrow on
charged massive vector boson lines.

Internal Feynman propagators: Feynman diagrams are obtained from the
covariant generating functional and so contain the bare/undressed Feynman prop-
agators, which are:

(neutral,
charged scalar)

p
p p

p p p p p p

p p p p

p p p p p p

p

� = ige�
µ URV

k

p1p2

R

,

p
p p

p p p p p p

p p p p

p p p p p p

p

� = ige�
µ URV

k

p1p2

R

=
i

p2 � m2 + i✏
= D0(p) (7.6.4)

(fermion)

p
p p

p p p p p p

p p p p

p p p p p p

p

↵ �

� = ige�
µ URV

k

p1p2

R

=
i( 6p + m)�↵

p2 � m2 + i✏
= S0(p)�↵

(photon -
in R⇠ gauge)

p
p p

p p p p p p

p p p p

p p p p p p

p

� = ige�
µ URV

k

p1p2

R

=
i

p2+i✏


�gµ⌫ +(1�⇠)

pµp⌫

p2

�
= Dµ⌫

0 (p)

(neutral, charged
massive vector)

p
p p

p p p p p p

p p p p

p p p p p p

p

� = ige�
µ URV

k

p1p2

R

,

p
p p

p p p p p p

p p p p

p p p p p p

p

� = ige�
µ URV

k

p1p2

R

=
i

p2� m2+i✏


�gµ⌫ +

pµp⌫

m2

�
= �µ⌫

0 (p) .

Summary of momentum-space Feynman rules: To calculate the contribu-
tions from a Feynman diagram we perform the following steps:

(i) Each line for an external particle is amputated and replaced with the corre-
sponding quantity according to Eq. (7.6.3);

(ii) Each internal line is replaced with a Feynman propagator according to Eq. (7.6.4);

(iii) Charges must be conserved at every vertex ;

(iv) Divide by the symmetry factor S for the diagram;

(v) Assign a relative minus sign to the diagram if it corresponds to another dia-
gram that is topologically equivalent up to the exchange of two identical exter-
nal fermion lines, (see Sec. 7.6.3 for examples of this);

(vi) Each vertex contains a momentum-conserving factor VF (2⇡)4�4(
P

j pj) with
VF some vertex structure depending on the detailed nature of the interaction,
e.g., VF = �i� for the (�/4!)�4 interaction as we saw in Sec. 7.4.3;

(vii) Integrate over all internal momenta with
R

d4p/(2⇡)4 (we will need renormal-
ization to make sense of integrations over loop momenta); and

(viii) The result will be a contribution to i(2⇡)4�4(
P

pf �
P

pi)Mfi.

Simpler approach used in practice: It is not di�cult see a simpler and
equivalent approach to steps (vi), (vii) and (viii):

(vi) Each vertex contains a vertex structure VF for the theory, where there may
be more than one VF defining the interactions of the theory. We typically just
refer to VF as a Feynman diagram vertex ;

External lines:

Internal lines:
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Relative signs for Feynman diagrams: The set of all contractions leads to the set of all topologically 
distinct Feynman diagrams, all topologically distinct diagrams need to be included. 
If two diagrams are topologically identical up to the exchange of two external boson lines  
or two external fermions lines then there is a relative plus sign or relative minus sign between 
the diagrams respectively. This is true independent of whether the lines are both in the initial 
state, both in the final state or one of each. 

Identical particles in the final state: For  identical final-state particles include a factor of  in 
 so as not to overcount final states. 

Divide diagrams by their symmetry factor: The symmetry factor  for a Feynman diagram is the 
number of symmetries that the diagram possesses under propagator and vertex exchanges. For each 
Feynman diagram and divide the contribution by its symmetry factor. 

Add a minus sign for fermion loops: When a Feynman diagram contains a fermion loop it comes with a 
minus sign. 

For detailed explanations of all these rules see Chapter 7. 

n 1/n!
dΠLIPS

n

S
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Putting things together we then identify in the nonrelativistic limit

M
4m1m2

=
g2

|p0 � p|2 + m2
�

=
g2

q2 + m2
�

= �V (q) = �V (|q|) , (7.6.41)

where we omit the factor �ss0
�rr0

since both cases are spin preserving. Then

V (r)=

Z
d3q

(2⇡)3
eiq·xV (q)=�g2

Z
d3q

(2⇡)3
eiq·x 1

q2 + m2
�

=� g2

4⇡r
e�m�r, (7.6.42)

where we have used Eq. (A.2.14).

If we replace one of the two fermions by an antifermion, then we find: (i) a minus
sign from Eq. (4.4.118) since v̄r

2(k)vr0

2 (k0) ! v̄r
2(0)vr0

2 (0) = �2m2�rr0
; and (ii) a

second minus sign because ignoring the time-orientation of the diagram we have
exchanged two identical fermion lines as we did in Eq. (7.6.37). The two minus
signs cancel and so the fermion-antifermion Yukawa potential is also attractive.
Finally, if we also replace the other fermion with an antifermion then there are two
additional sign changes that again cancel. So the antifermion-antifermion Yukawa
potential is again attractive. As discussed in Sec. 5.2.2 Yukawa used the typical
range of the strong interaction of ' 1 fm to predict the existence and approximate
mass (m⇡ ⇠ 200 MeV) of the pion. The pion is a pseudoscalar and so the relevant
Yukawa interaction is �g ̄i�5� . The �5 will mix large and small components of
the spinors in the Dirac representation leading to a leading p-wave nature of the
pion-nucleon interaction since the pseudoscalar pion parity will couple to odd ` in
a partial wave expansion for the scattering. However, the essentials of the above
argument survive. A discussion of the pion-nucleon interaction in terms of the
isospin formalism can be found in Chapter 10 of Bjorken and Drell (1964).

Quantum electrodynamics

Consider the invariant amplitude arising from the scattering of two distinguishable
charged fermions, f1f2 ! f1f2, with charges q1, q2 and masses m1, m2 through
the exchange of a virtual (o↵-shell) photon in an arbitrary covariant gauge, e.g.,
electron-muon scattering, e�µ� ! e�µ�. Similar to the case of the Yukawa inter-
action the Feynman rules give at tree-level a t-channel contribution to f1f2 ! f1f2,

iMf1f2!f1f2 =

p
p p

p p p p p p

p p p p

p p p p p p

p

↵ �

k�k

p�p

k�

k

p�

p

k�k

p�p
p

k

p�

k�

k�

k

p�

p

k�

k

p�

p

k�

k

p�

p

k�

k

p�

p

p�

p

k�k

p�p

k�

k

p�

p

k�k

p�p
p

k

p�

k�

R

k�

k

p�

p

k�

k

p�

p

k�

k

p�

p

k�

k

p�

p

iBK2

S2S1

v1 v4

v3

v3

� = ige�
µ URV

� = ige�
µ UkV

k

p1p2

k

(7.6.43)

= (�iq1)ū
s0

1 (p0)�µus
1(p)

i
⇥
�gµ⌫ +(1�⇠)(qµq⌫/q2)

⇤

q2
(�iq2)ū

r0

2 (k0)�⌫ur
2(k) ,

where the four-momentum transfer is qµ ⌘ (p0�p)µ = �(k0�k)µ and t = q2 = qµqµ.

Current conservation for a free Dirac fermion is @µĵµ
Dirac(x) = @µ: ˆ̄ (x)�µ ̂(x): = 0,

where we recall that Noether currents are conserved when the equations of motion
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are satisfied, i.e., when the field operators are on-shell. For plane wave solutions,
us(p) and vs(p), current conservation gives

(p0�p)µūs0
(p0)�µus(p) = (p0�p)µv̄r0

(p)�µvs(p0) = 0 (7.6.44)

(p0+p)µv̄s0
(p0)�µus(p) = (p0+p)µūr0

(p)�µvs(p0) = 0 .

Proof: There are two proofs of this result.
(i) Direct proof: From Eqs. (4.4.110) and (4.4.122) we have ( 6p � m)us(p) =
( 6p + m)vs(p) = 0 and ūs(p)( 6p � m) = v̄s(p)( 6p + m) = 0. Use the short-
hand notation u ⌘ us(p), u0 ⌘ us0

(p0) and so on. Then 6pu = mu, 6p0u0 = mu0,
6pv = �mv, 6p0v0 = �mv0, ū 6p = ūm, ū0 6p0 = ū0m, v̄ 6p = �mv̄, and v̄0 6p0 = �mv̄0.
Then we note that (p0 � p)µū0�µu = ū0( 6p0 � 6p)u = (m � m)ū0u = 0. Similarly,
(p0 � p)µv̄�µv0 = (�m + m)v̄v0 = 0, (p0 + p)µū�µv0 = (�m + m)ūv0 = 0, and
(p0 + p)µv̄�µu0 = (m � m)v̄u0 = 0.
(ii) Proof from current conservation: Acting with @µ on ĵµ

Dirac(x) in Eq. (6.3.210)
we see that current conservations requires that the terms containing b̂†b̂, d̂†d̂,
b̂†d̂†, and d̂b̂ must each vanish and Eq. (7.6.44) then follows.

This shows that the qµq⌫ terms in Mf1f2!f1f2 vanish and so the result is gauge-
invariant as expected. So we can choose any convenient ⇠. For all fermion calcu-
lations below it is easily verified that Eq. (7.6.44) ensures gauge invariance. We
present each result in Feynman gauge, ⇠ = 1, since it is the most convenient.
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where both the t and u channels contribute and the relative sign is due to the
interchange of two final state fermions. An important example is e�e� ! e�e�,
which is referred to as Møller scattering.

For fermion-antifermion scattering at tree level we again have a t-channel and an
s-channel contribution to the invariant amplitude as we did in the Yukawa case,
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where the relative sign occurs for the same reason as it did in Eq. (7.6.37). An
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Dirac(x) in Eq. (6.3.210)
we see that current conservations requires that the terms containing b̂†b̂, d̂†d̂,
b̂†d̂†, and d̂b̂ must each vanish and Eq. (7.6.44) then follows.

This shows that the qµq⌫ terms in Mf1f2!f1f2 vanish and so the result is gauge-
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where both the t and u channels contribute and the relative sign is due to the
interchange of two final state fermions. An important example is e�e� ! e�e�,
which is referred to as Møller scattering.
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where the relative sign occurs for the same reason as it did in Eq. (7.6.37). An

Easiest to use  Feynman 
gauge now .  ξ = 1



Foundations	of	QFT,	ANU	Summer	School,	2023

Example	QED	tree	level	(no	loop)	calculaIons	
(See	Chapter	7,	Sec	7.6.3)	

17

644 Interacting Quantum Field Theories

example of this is electron-positron scattering, e�e+ ! e�e+, which is referred to
as Bhabha scattering. If the antifermion is not the same species as the fermion,
f1f̄2 ! f1f̄2, then only the t-channel contribition occurs, e.g., e�µ+ ! e�µ+. If
we consider the annihilation and creation of particle-antiparticle pairs of di↵erent
species, f1f̄1 ! f2f̄2, then only the s-channel can contribute, e.g., e�e+ ! µ�µ+.

For fermion-antifermion annihilation into photons, ff̄ ! ��, we find at tree level,
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= i(�iqc)
2✏µ(p0, �0)⇤✏⌫(k0, 0)⇤v̄r(k)

⇢
�⌫ [( 6p�6p0)+m]�µ

t�m2
+

�µ[( 6p�6k0)+m]�⌫

u�m2

�
us(p),

where �0, 0 are the polarizations of the photons with momenta p0, k0 respectively.
Spinor objects are ordered right to left in the direction of the fermion arrow.

In the case of fermion-photon scattering, f� ! f�, we find at tree level,
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= i(�iqc)
2✏⌫(k0, 0)⇤ūs0

(p0)

⇢
�⌫ [( 6p+ 6k)+m]�µ

s�m2
+

�µ[( 6p�6k0)+m]�⌫

u�m2

�
us(p)✏µ(k, �).

An important example is electron-photon scattering, e�� ! e��, which is Compton
scattering. The kinematics of this was briefly discussed in Sec. 4.7.

Bremsstrahlung (German for ‘braking radiation’), is the QED process in which
a charged particle emits a photon due to its interaction with an external classical
electromagnetic field, Aµ

cl. If the external field is macroscopic, then it is a reasonable
approximation to treat it as a classical field. For example, the external electromag-
netic field could be that in a particle accelerator or it could be the Coulomb field
of a very heavy or fixed nucleus. The QED Lagrangian density in this case has the
replacement Aµ ! Aµ + Aµ

ext, where Aµ
ext(x) is the classical background electro-

magnetic field and where the corresponding background classical E and B fields are
obtained in the usual way from this. The lowest order Bremsstrahlung process cor-
responds to Eq. (7.6.48) but where for the initial photon we make the replacement
✏µ(k, �) ! Aµ

ext(k) with Aµ
ext(k) being the Fourier transform of Aµ

ext(x). In the case
of a fixed nucleus with charge Ze we have Aext = 0 and A0

ext = �Ze/4⇡|x|, which
is obtained from Eq. (2.7.94) in the case of a point nucleus. The detailed calculation
is given in Itzykson and Zuber (1980) and is meaningful provided Ze/(v/c) ⌧ 1,
where v is the initial charged particle velocity with respect to the nucleus. The
result of this calculation is the Bethe-Heitler cross-section, which is a little too
complicated to derive here. However, it is noteworthy that this cross-section has
a 1/! divergence as the emitted photon energy k00 ⌘ ! vanishes, ! ! 0. This is
an example of an infrared divergence that results due to the massless nature of
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example of this is electron-positron scattering, e�e+ ! e�e+, which is referred to
as Bhabha scattering. If the antifermion is not the same species as the fermion,
f1f̄2 ! f1f̄2, then only the t-channel contribition occurs, e.g., e�µ+ ! e�µ+. If
we consider the annihilation and creation of particle-antiparticle pairs of di↵erent
species, f1f̄1 ! f2f̄2, then only the s-channel can contribute, e.g., e�e+ ! µ�µ+.

For fermion-antifermion annihilation into photons, ff̄ ! ��, we find at tree level,
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= i(�iqc)
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where �0, 0 are the polarizations of the photons with momenta p0, k0 respectively.
Spinor objects are ordered right to left in the direction of the fermion arrow.

In the case of fermion-photon scattering, f� ! f�, we find at tree level,
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= i(�iqc)
2✏⌫(k0, 0)⇤ūs0

(p0)

⇢
�⌫ [( 6p+ 6k)+m]�µ

s�m2
+

�µ[( 6p�6k0)+m]�⌫

u�m2

�
us(p)✏µ(k, �).

An important example is electron-photon scattering, e�� ! e��, which is Compton
scattering. The kinematics of this was briefly discussed in Sec. 4.7.

Bremsstrahlung (German for ‘braking radiation’), is the QED process in which
a charged particle emits a photon due to its interaction with an external classical
electromagnetic field, Aµ

cl. If the external field is macroscopic, then it is a reasonable
approximation to treat it as a classical field. For example, the external electromag-
netic field could be that in a particle accelerator or it could be the Coulomb field
of a very heavy or fixed nucleus. The QED Lagrangian density in this case has the
replacement Aµ ! Aµ + Aµ

ext, where Aµ
ext(x) is the classical background electro-

magnetic field and where the corresponding background classical E and B fields are
obtained in the usual way from this. The lowest order Bremsstrahlung process cor-
responds to Eq. (7.6.48) but where for the initial photon we make the replacement
✏µ(k, �) ! Aµ

ext(k) with Aµ
ext(k) being the Fourier transform of Aµ

ext(x). In the case
of a fixed nucleus with charge Ze we have Aext = 0 and A0

ext = �Ze/4⇡|x|, which
is obtained from Eq. (2.7.94) in the case of a point nucleus. The detailed calculation
is given in Itzykson and Zuber (1980) and is meaningful provided Ze/(v/c) ⌧ 1,
where v is the initial charged particle velocity with respect to the nucleus. The
result of this calculation is the Bethe-Heitler cross-section, which is a little too
complicated to derive here. However, it is noteworthy that this cross-section has
a 1/! divergence as the emitted photon energy k00 ⌘ ! vanishes, ! ! 0. This is
an example of an infrared divergence that results due to the massless nature of
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If E � me then we can neglect the electron mass and take p ! E, which simplifies
the expression. In the ultrarelativistic limit of E � mµ we find for e+e� ! µ+µ�

✓
d�

d⌦

◆

cm

=
↵2

16E2

⇥
1+cos2 ✓

⇤
=

↵2

4s

⇥
1+cos2 ✓

⇤
) �e+e�!µ+µ� =

4⇡↵2

3s
, (7.6.73)

since
R

d⌦ (1 + cos2 ✓) = 2⇡
R +1

�1 d cos ✓ (1 + cos2 ✓) = 2⇡[x + 1
3x3]+1

�1 = 16⇡/3.
Di↵erential cross-section for e�µ� ! e�µ�: Only the first diagram in

Eq. (7.6.45) will contribute since e� and µ� are distinguishable, which gives

iM = ie2 ūs0
(p0)�µus(p)ūr0

(k0)�µur(k)

t
, (7.6.74)

Using Eq. (7.6.61) for the unpolarized cross-section the analog of Eq. (7.6.65) is
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⇤
, (7.6.75)

where we have p, p0 for e� and k, k0 for µ�. The first line above is equivalent to the
first line of Eq. (7.6.65) with the replacements (p, k; p0, k0) ! (p, �p0; k0, �k). This
is an example of crossing symmetry and can be deduced from rotating the relevant
Feynman diagrams. With these replacements in Eq. (7.6.68) we arrive at the second
line above. It also follows that

s= (p+k)2 !(p�p0)2 = t , t=(p0�p)2 !(k0� p)2 =u , u=(k0�p)2 !(k+p)2 =s ,

which when applied to Eq. (7.6.65) lead to the third line above. While we can
perform the explicit calculations to obtain the results in Eq. (7.6.75) we obtain
them more easily using the crossing symmetry replacements in Eq. (7.6.65).

The kinematics for reactions related by crossing symmetry are of course di↵erent
as illustrated in Fig. 7.12. Since the initial and final state particles are the same then
using four-momentum conservation we arrive at the following CM frame kinematics
when we neglect the electron mass for simplicity (me ! 0),
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Note that pcm
i = pcm

f = p in this notation. We find p · k = p0 · k0 = p(E + p),
p0 ·k = p ·k0 = p(E +p cos ✓), p ·p0 = p2(1�cos ✓), k ·k0 = E2 �p2 cos ✓, s = (E +p)2
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If E � me then we can neglect the electron mass and take p ! E, which simplifies
the expression. In the ultrarelativistic limit of E � mµ we find for e+e� ! µ+µ�
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since
R

d⌦ (1 + cos2 ✓) = 2⇡
R +1

�1 d cos ✓ (1 + cos2 ✓) = 2⇡[x + 1
3x3]+1

�1 = 16⇡/3.
Di↵erential cross-section for e�µ� ! e�µ�: Only the first diagram in

Eq. (7.6.45) will contribute since e� and µ� are distinguishable, which gives
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