Lecture 5: Interacting field
theories, Feynman diagrams,
cross sections,QED tree-level
calculations
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Physical spectrum of states
(See Chapter 7, Sec 7.1)
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Physical spectrum of states: We can build a mixéd Fock space in terms of the full vacuum | €2),
physical singe-particle states and the different bound states of the full interacting theory. This is a Fock

space constructed from free single particles of mass m and free bound states of masses M/, M, and so

on. Denote this Fock space as Vi, and the full Hilbert space of the interacting theory as V. Let | p)
denote a single particle or a stable bound state in an on-shell momentum eigenstate in the full theory.

Then clearly for all | p) we have
|Q), [P) € Vo and  [Q),[p) € Vg -

Cluster decomposition principle: In the above discussion we are implicitly assuming that when stable
particles and/or stable bound states have spacelike separations approaching infinity, then we can neglect
their influence on each other. This is a familiar property of physical systems. Were it not the case, then to
describe the behavior of any system we would have to describe the behavior of the whole universe. All
systems of physical relevance satisfy this principle.
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Kallen-Lehmann spectral representation
(See Chapter 7, Secs 7.1 and 7.2)

Single-particle

p (S) state
Bound
states
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states
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Kallen-Lehmann spectral representation We can define the full propagator of the interacting theory as
_ NN . ip(s) ine(x—V)
Dp(x —y) = (Q|Tpx)p(y) | Q) = f o “ ds — . ] ip-(x—y) = J(z )4D (p)e~P =y

pc—s+ie

where the last line defines the momentum-space full propagator D(p), [see the proof of Eq. (7.2.9)]

[
m? (2m)*  branch cut
@ o0 0 ©
single-particle bound-state two-particle
pole poles branch point

In the complex s-plane we have poles at single particle and bound state masses and branch cuts starting
at multi particle production thresholds. We then have

p(s) = Z5(s — m?) + [bound state 5-functions]
+[2-particle part for s > (2m)?*] + [3-particle part for s > (3m)*] + ---
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Scattering matrix
(See Chapter 7, Sec 7.3)

Definition of the S-matrix: The Scattering Matrix (S-matrix) is defined through its matrix elements Sﬁ- as

= (f| lim U(T, - T)|i) = (f|S]i),

T— o0
where to describe scattering |i) and | f) are Heisenberg picture states. In particular they are chosen to
be states that describe sets of particles in wave packet states separated by arbitrarily large spatial
distances. So if the cluster decomposition principle holds then they approach wave packet states in the
non-interacting Fock space, because interactions between the wave packets become negligible at large

spatial separations. Then such |i) and | f) in the full theory are asymptotically close to their Fock space
versions.

Taking the infinite separation of the wave packets limit first, we can then after that let the wave packets
become sufficiently broad that they approach plane wave states. In summary, we work in the limit where

i) = |p;p,) and | f) = |k K, )

with an m-particle initial state of approximate plane waves and an n-particle final state of plane waves
both in the Fock space. The order of the limits is important to remember.

The Transition Matrix (T-matrix)' It is conventional to separate the S-matrix operator Sinto a part where
no transmon takes place, I and a part where transitions occur, zT
S=1+iT and Sﬁ Oy + i1} .

The factor of 7 in the Toperator definition is conventional. The Y}i are the elements of the 7-matrix, which

is also referred to as the fransition matrix or transfer matrix. We understand that 5ﬁ- = (f|i) and assumes
unit normalization for our states.

3 THE UNIVERSITY

) “ADELAIDE

Foundations of QFT, ANU Summer School, 2023



Invariant amplitude
(See Chapter 7, Sec 7.3)

Definition of the invariant amplitude .Z: Now consider an initial state consisting of two particles with
masses m, and my and three-momenta p, and pg so that |i) = |p4pPp) and a final state consisting of

n particles with masses m, ..., m, and three-momenta p,, ..., p,, so that | f) = |p;--*p,,) - In a
Poincaré-invariant system we have four-momentum conservation and we can factor out a momentum
conserving delta-function such that

P\ — 44
7}i=<f| Tli) = (2n)"6 (PA+PB_Z?=1Pi)/%fia
where i=(py, pg) and f =(Py, ..., P,) and . ; is called the invariant amplitude or invariant matrix
element. We are initially consider scalar (no spin) particles for simplicity.

Using a simple shorthand we see that in all cases where f # i we have
FISID 1P = [FIT1) 1P = Qo8 008 (patps— 2, p) | M5 |

2
= (VAT)Q2n)'6"(pa+ps—2_, P) | Ay "
where we have used the result that in any regularization of the spacetime volume we have the

correspondence (27)*5%(0) — (VAT), where Vis the finite spatial volume and AT is a finite time
interval. We emulate the scattering problem in a finite spacetime volume and then take the infinite volume
limit, but we will omit that detail here.

The invariant amplitude /%ﬁ- plays an essential role in the calculation of physical cross-sections as we will
soon see.
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Cross-section
(See Chapter 7, Sec 7.3.1)

Classical cross-section: Classically the cross-section Ay of an object is the two-dimensional area it
presents in a direction orthogonal to an incident beam of light or particles as shown below.

Measuring the cross section: Let ® denote the flux of the incident beam, which is defined as the
number density of the beam p multiplied by the beam velocity v,

® = pv = number of particles/unit time/unit area
@ is the number of beam particles passing though a unit area orthogonal to the beam per second. The
current of incident particles on an area A orthogonal to the beam is I, . = ®A = pvA.
The number of particles scattered is [V, and the number scattered per unit time by the target is the

scattered current, ISC, which is also called the scattering rate, R, so by definition

dN. \ ,
R = dSC =1.. \\ -
T e
The total cross-section, o, is defined as, —
# of scattered particles/sec I —
c = = —.
# of incident particles/sec/unit area @ — Ax
In classical physics every beam particle that hits the object will scatter. —
So we have [, = PAy and so classically we have
5= Isc — (I)AX — A / ______________ N
® P X / ;

which is why we refer to ¢ as a cross-section even in quantum mechanics. It has the units of area.

The total cross-section o is the effective area of the beam that is scattered. It is also the effective
scattering area of the target seen by each particle in the beam.
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Differential cross-section

(See Chapter 7, Sec 7.3.1 and 7.3.2)

Diverging cross-sections: Consider a beam of charged particles scattering off of some charged target.
Since the Coulomb potential has an infinite range, classically every particle in the beam will be deflected.
Beam particles increasingly far from the target will be deflected by decreasing amounts. The “forward

scattering” component of the cross-section of the beam then diverges as @ — 0. Even for finite range
interactions the unscattered beam is in the forward direction and so it is not meaningful to measure very
forward (or very backward) scattering for this reason. So we typically study the differential cross-section,
where final-state particles are not moving forward or backward along the beam axis but instead scatter

into some finite solid angle €2 not containing the beam axis.
Differential cross section: \We then define the differential cross-section as
do  # of scattered particles/sec/unit solid angle 1 dI (0, ®)

dQ # of incident particles/sec/unit area O dQ
We sometimes also refer to do as the differential of the cross-section. We obviously have

do T 27
— stz— = [ dQJ sin Od¢ —(9 b) .
Similarly the variation of the cross-sectlon with any combination of kinematic variables is said to be a

differential cross-section, e.g., do/d0, do/dE, d?c/dxdy for any kinematic variables x and y and so on.
y y

Relating the cross-section to the S-matrix and the invariant amplitude .Z: It is not possible to do this
justice here. Athorough discussion is given in Sec. 7.3.2. We simply give the result, which is that

Jn dp D (Zﬂ)454(PA+PB Z 1p])|ﬂfl|
n=1,2,... L k=1

H , includes all final states f
(27:)32Epj | |va—Vg|4E, E,

where we are assuming that a beam of A particles with velocity v, collides collinearly with a beam of B

particles with velocity VB, i.e., |v4 — vg| is the relative speed of the oppositely approaching beams.
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Two-body scattering & Mandelstam variables

(See Chapter 7, Sec 7.3.4)

LIPS: Lorentz invariant
phase space (LIPS)
consists of products of the
Lorentz invariant

combinations a’3p/Ep

and the Lorentz invariant
four-momentum delta

function *(-++) and its
companion factor (27)*.
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p1\/p3 ]{(_q)p/& ql;t:q2

/! N > !
P2 P4 o— 2 /A
/ q
1+2—-3+4 D2 D4 P2 P4
‘m_me» s-channel t-channel u-channel

Two-body scattering and Mandelstam variables: s = (p; + p2)?, t = (p1 — p3)? and
u = (p1 —pa)°.

we have for the
s-channel ¢* = (p} + pb) = (pt + p) and s = ¢, for the t-channel we have
¢ = (pf —pt) = (py — ph) and t = ¢*, and for the u-channel we have ¢* =
(p} —p4) = (p5 —1p5) and u = ¢*. Note that s = p +p2+2p1-p2, t = pi +p3—2p1-ps
and u = p? + p3 — 2p; - p4. Summing these we find

s+t+u=m:+m3+m;+mi+2p7+2p1-p2—2p1-p3—2p1 - Pa
= m} +m3 + m3 +mj + 2p1 - (p1 + p2 — p3 — pa)
= m? +m3+m3 +m]. (7.3.76)

For two particles scattering into a two-particle final state, 1 + 2 — 3 + 4, we have
in any collinear inertial frame,

_ [(Myil? ATTMPS — ATTLIPS
AE\ Eslvy — vo| 2 AF 2

dIL;"> = (2m)16% (1 +p2—ps—pa)[d®ps/ (27)°2Ep ] [d*pa/ (27)*2Ep,] . (7.3.77)

12
dO' ’Mf@’

9 THE UNIVERSITY

o ADELAIDE

8



Two-body scattering

(See Chapter 7, Sec 7.3.4)

{_Ncb
A 0N

Two-body scattering: a) in the Center of Momentum (CM) frame; and b) in the
fixed-target frame.

Center of Momentum (CM) frame: In this frame we have by definition

Cm_|p1|—|p2| and Cm_|p3|—|p4|
and it follows that

s=(p1+p) =E+E) - +p)*=(E +E) =
Defining d€2 = d0f sin 9d¢ = d¢ d(cos ) we obtain the form
<d0> | Ms> psm A
_ il
dQ ) apenifs 16x2y/s Oz pgm )
Fixed-target (laboratory) frame: In the fixed target frame, where particle 1 is the beam particle and
particle 2 is the target particle at rest we have p, = 0. In that case we find

de 1 1 p3
dQ  64r2 pym, py(my + E, ) — p\E, cos @

2 _ _
| M f;|” where here py = |py| and p; = |ps] .
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Unitarity of the S-matrix & the Optical theorem

(See Chapter 7, Sec 7.2)

- PA PAT PA

PA PA
2Im =S [dIl, nn =" [dl, n
PB PB

_LPB PB- PB
Unitarity of the S-matrix: Consider any complete orthonormal basis of the full Hilbert space with basis

vectors | i), then (j| k) = ; and Zj |7)(j| = 1. Then ST = S~ and so S is unitary since
(S™S)y = X, SuSpu = limg_ o, 3 (i1 UT, = T | £)(¢ | U(T, = T) | k)
= lim (j|U(T, = DY'UT, = D)1 k) = (j Ik} = 3.
Since = S'S=U—-iTU - iT)=1+i(T—-T") + T'T then
—i(T-TH=T'T > il =-TH =X, TiT,.

Then choosing j = k we find the important result that 2 Im Y}j = Zf | Tfj

|* . Note that we sum over the

full basis but we can choose any specific | j) or linear combination of interest.

Moving to our continuous basis the orthonormality and completeness become
Gl =6, = (pyP,141q,) = 8,,20)"QE, ) (2E, )6°(p; — q))6°(p, — q,,) ,

A A d3p
. . n k
I=Ze0e1 = 1= E [ g 1o (Rl
We then arrive at the result illustrated in the above figure. It can be used to simplify some calculations.
2Im =Y [dI"™ |4,

|2 . — the Optical Theorem

PAPB—PAPB APB—P1°""DPn
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Invariant amplitudes from Feynman diagrams
(See Chapter 7, Secs 7.4 and 7.5)

Calculating Green’s functions with Feynman diagrams: See Sec. 7.4 for full details. With some effort
it is possible to show that

n A Dp p(xy)---Pp(x, iS[¢] sk
(@1 T | Q) = A2 P i) e (i)

[ D eisiol " 5jCry) 05,

Z1j]

j=0

sum of all connected Feynman
= C = = GW(x;, -, x) .
Za “ [diagrams with n external points (1 »
Calculating invariant amplitudes with Feynman diagrams: Then using the Lehmann-Symanzik-
Zimmermann (LSZ) formalism it follows that we obtain invariant amplitudes fi by amputating the

external legs of the sum of all Feynman diagrams contributing to the Green'’s function for this process.
G(”)(pl, .-+, p,) is the FT of G(”)(xl, e, X))

~1 ~1
Gggp(pl’ ’pn) — DF (pl)DF (pn) G(n)(pla ’pn)

We then use LSZ to convert the G into M 1; by

amp
attaching appropriate external states for the fand i .
We can not possibly do justice to a proof of the LSZ formalism here but a full derivation and discussion
for scalars, fermions and photons is given in Sec. 7.5. Given that it now remains to show how to calculate

with Feynman diagrams using the Feynman rules that can be derived for each theory of interest. We do
not derive the Feynman rules for each theory here, but is is relatively straightforward to do from the

interacting theory Lagrangian density £ using the functional integral expressions.

3 THE UNIVERSITY

L)) /ADELAIDE 11




Examples of interacting theories:
(See Chapter 7, Secs 7.4 and 7.5)

Scalar field with quartic self-interaction:

L = Lok L= L+ Ll =1 |90~ mp?| - WAV,
H = Hy+ H"' = Hyc + H"} = Hyg + [aﬂx(m Np?.

Yukawa interaction:
LI, w) = — TN, W w) = — gy or —glriysdy,
Z = °CZO+°CZYU1<: gKG_l_fZDiraC_l_gYuk: gKG""l/_/(ia_mf)l//_l'gYuk

nt nt int °

%:%O-I_%int:%o-l_%yuk:%KG-l_%DiraC-l_%'Yuk‘

int 1nt

Quantum electrodynamics (QED):
_ ED _ ED
Z = 30"‘31% - gDirac-l_gMaxwell_l_gi%t

= [p(i 0 — my| + [—%FWF””] + [~q.pAy] = w(D - my—SF, F*,

QED - — ; — 7 — 7 — ]
g- (Aﬂa Y, l//) — qCA//‘]I/;iraC I ch,ul//yMl// I qu//Al/jﬂ Dﬂ - a,u + lch/,l ’

nt

3 THE UNIVERSITY

) /ADELAIDE
LA 4




QED is a U(1) gauge theory

(See Chapter 7, Secs 7.4, 7.5 and 9.1)

QED as a gauge theory: The Dirac action is invariant under a global phase transformation,
w(x) = e“y(x). Using Noether's theorem leads to the conserved fermion current jgirac = yyty:.

as we saw earlier. Combine a local phase transformation y(x) — e'“®yr(x) of the fermion field and a

simultaneous gauge transformation of the photon field (no change to E and B),
yx) = y'(x) = ey x), Pk = Fe) =e ),
A, (x) — A/;(x) =A,(x) — (l/qc)dﬂa(x) .
We refer to these two combined transformations as a gauge transformation of the theory. We note that
V(i)' — mp)¥' = V(i) — mp)¥ and F,, F"* = F, F*"
and so we say that QED is gauge invariant. Since e'“ is an element of U(1) we say that QED is a U(1)
gauge theory and hence abelian. Since U(1) is abelian we say that QED is an abelian gauge theory.

< gauge transformation in QED

Nonabelian gauge theories: This illustrates how to produce a gauge theory from a non-gauge theory:
(i) turn a global phase invariance into a local one; (ii) introduce gauge fields and a corresponding

covariant derivative Dﬂ = 8ﬂ + igAﬂ; (iii) the resulting theory is invariant under the combined gauge
transformation for yand A¥.

—

If the global phase invariance is ¢! T with T the matrix generators of some nonabelian Lie group, then
we will arrive at a nonabelian gauge theory using this construction, e.g, quantum chromodynamics is the

nonabelian gauge theory corresponding tp SU(3) associated with quark and gluon color with the 7“ as
3 X 3 matrix representation of SU(3) matrices. Then A, = A, T" and y = (W}, ¥, ¥3) = (W, W)y, W,,)-
See Chapter 9, Sec 9.1 and Georgio’s lectures for details.
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Feynman rules
(See Chapter 7, Sec 7.6)

(scalar in) — > = 1 (scalar out) = 1 (7.6.3)
> ® ® >
(fermion in) — > = u®(p) (fermion out) — = u®(p)
.| ® ° <
External lines: (antifermion in) - = v°(p) (antifermion out) — > = v®(p)
(photon in) 5 = e’ (p, \) (photon out) = e’(p, \)*
(charggd R | (charged *—~* """ |
scalar in) p scalar out) p
(anti-charged ~7"*"""* | (anti-charged ~*~"<"""" |
scalar in) P scalar out) p '
(neutral, S i B
charged scalar) ’ > T p2 —m?2 4 e Do(p) (7.6.4)
. p (¥ +m)ga
Internal lines: (fermion) o —»— f3 p? —m? + ie So(p)ga
(phOtOH - L v __uv . pupy 2 Y714
in Re gauge) RGO p2+ie g™ +(1-¢) 2 | Dy~ (p)
neutral, charged [ L, prp” v
(massivevectgor) S R = e 24 [_MJV QIZA/()L()-
P — m=—+1e€ m
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Feynman rules
(See Chapter 7, Sec 7.4.2 and 7.6.1)

Relative signs for Feynman diagrams: The set of all contractions leads to the set of all topologically
distinct Feynman diagrams, all topologically distinct diagrams need to be included.

If two diagrams are topologically identical up to the exchange of two external boson lines

or two external fermions lines then there is a relative plus sign or relative minus sign between

the diagrams respectively. This is true independent of whether the lines are both in the initial

state, both in the final state or one of each.

Identical particles in the final state: For n identical final-state particles include a factor of 1/n! in
dTI-PS 50 as not to overcount final states.

Divide diagrams by their symmetry factor: The symmetry factor S for a Feynman diagram is the
number of symmetries that the diagram possesses under propagator and vertex exchanges. For each
Feynman diagram and divide the contribution by its symmetry factor.

Add a minus sign for fermion loops: When a Feynman diagram contains a fermion loop it comes with a
minus sign.

For detailed explanations of all these rules see Chapter 7.
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Example QED tree level (no loop) calculations
(See Chapter 7, Sec 7.6.3)

\ //
. p p time
ZMf1f2—>f1f2 — , > (7.6.43)
BN
. i =g+ (1—6)(9u0./4%) N
= (—iq1)ui (p)y"ui(p) 9 2 - ]( iq2) s (k') us (k) ,
4 / Easiest to use Feynman
IMypryrr = k’ gauge now ¢ = 1. (7.6.45)
1IN
ilig T gw "(Kyrur(k)  at(p)y u(k)[— gw]fﬂ”"(lf’)v”us(za)>
C U Y
iMpporp = ¥ (7.6.46)
k: k
—=i(—iq,) P ) u(p)|—=gun]v Cwt(p )yon(k)[- gw]vr(k)v”us(p)}
C t S 9
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Example QED tree level (no loop) calculations
(See Chapter 7, Sec 7.6.3)

(7.6.47)

—I—m]%b 4 ’Yu[(]é_ k,)—i_mhy}us(p)a

(7.6.48)

—i(—iqc)Qe”(k', R/)*ﬂs,(p/){%/[(ﬁ_l_ k)+m]7M _I_fY,u[(%_% )+m]71/} uS(p)eu(k, )\)

s—m? u—m?
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Example QED cross-section calculation
(See Chapter 7, Sec 7.6.5)

e~ 0

P = (p,p) /i/ < M =(E-p) (7.6.76)
k/“=<E,—p') 'u_ pE|p|:‘p/|7 E22p2+mi

p-p =picost, Eu=E+p

Differential cross-section for e "y~ — e : Only the first diagram in
Eq. (7.6.45) will contribute since e~ and p~ are distinguishable, which gives

YT ONAVTIE T N, T

Using Eq. (7.6.61) for the unpolarized cross-section the analog of Eq. (7.6.65) is

1 et y
ME = 15, ol MP2 = e ) (K, (e (9 me)
8e* | 2 2 2 9
= 5 p-k'p k+p-kp" K'— mip-p'— mZk-k'+-2mim? |
o 12 U TS (me—I_m,u)_ (me—i_m,u,) ] ) ( .0. )

where we have p,p’ for e~ and k, k' for u=. The first line above is equivalent to the
first line of Eq. (7.6.65) with the replacements (p, k;p’, k") — (p, —p'; k', —k).
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