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for fermions, quantized 
electromagnetic field and gauge 
fixing
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Fermi-Dirac statistics: Since fermions must obey fermi-Dirac statistics and hence the Pauli exclusion 
principle we need to build states that are antisymmetric under pairwise particle exchange, c.f., symmetric 
states under pairwise exchange for bosons.


Toy example: Consider a system with only  possible basis states and a single fermion species. We can 
put at most one such fermion in each basis state. Denote the annihilation and creation operators for the 
single-fermion basis state  as  and  respectively with the necessary properties




which we can summarize in terms of the basis state occupation number  as





So if the state  is unoccupied then  creates a fermion in that state and  acting on the state gives 

zero, whereas if  is occupied then  acting on the state gives zero and  annihilates a fermion


from that state. We also note that  is the number operator for the  basis state and that 

,  since





Define now , which vanishes if any two  are the same. We require the 

state to be antisymmetric and so the pairwise exchange of two different  must also give a minus sign.
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This means that we must have           if .


For consistency we also then require that  for . So we have arrived at the 
anticommutation relations for fermion annihilation and creation operators for our toy model,


 .

We will generalize these results when constructing our quantum field theory for Dirac fermions. The set of 
all possible states  then form a basis of fermion the Fock space and every 
state in the Fock space is some linear combination of these basis states. Obviously the system can never 
contain more than  fermions, since there is are only  orthogonal single-fermion states available.


Fock space for fermions and anti fermions: Denote the annihilation and creation operators as  and 

 for fermions and  and  for antifermions respectively. Let  and  be the number 

operators measuring the number of fermions and antifermions respectively in the state  with energy . 
Then the normal-ordered Hamiltonian for free particles must have the form




where the annihilation operators annihilate the vacuum so that an empty state has no energy,


.

This is analogous to the discussion of the charged scalar field. The anticommutation relations are
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Fock space for Dirac fermions: For Dirac fermions the single particle basis states are the plane wave 
solutions of the Dirac equation, which are the normal modes of the Dirac fermion system. This 
corresponds to , where  is the spin state and  is the three-momentum of the

state. For a theory of free relativistic fermions there must be a corresponding  normal-ordered 
Hamiltonian operator such that


 


with  and where the anticommutation relations are





We not that the total energy is the sum of the energies of the fermions and the antifermions.


We define the one-fermion and one-antifermion states created by  and  respectively as


 ,


where the normalization is chosen such that the bra-kets of such states are Lorentz invariant. We find





The results immediately follow from the anti commutation relations.
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We know that  and  are the plane wave solutions (normal modes) of the Dirac 
equation  . We define the Schrödinger-picture operators





where the spinor index  is suppressed for brevity on , ,  and its hermitian 
conjugate . These definitions and the anti commutation relations lead to


    


where fermion normal ordering brings a -ve sign. We identify the normal-ordered Hamiltonian density as 

 .


It also follows that we then have

 ,


which are the canonical anticommutation relations for the fermion field.

The Heisenberg picture operators are then (choosing  for convenience)
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= ∫ (d3p/(2π)3)∑sEp : (b̂s†
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Simple canonical quantization argument: Consider the Dirac action




where  is a four-component column vector with components , where  is the complex 
conjugate row vector with components ,  and  where  is the Dirac adjoint spinor. 
Similarly to the complex scalar field case, we can then express Hamilton's principle for the Dirac action as





which leads to the recovery of the Dirac equation as the equations of motion,

 .


The canonical momentum densities conjugate to  and  are respectively,

 .


We see that we have a problem since  means that we have a singular system and we should use 
the Dirac-Bergmann algorithm at this point. But let us press on anyway and form the Hamiltonian





We define in the usual way      .

Spacetime translational invariance leads to the conserved stress-energy tensor


 .

S[ψ̄, ψ] = ∫ dt L = ∫ d4x ℒ = ∫ d4x ψ̄(x)(i /∂ − m)ψ(x)
ψ(x) ψα(x) ∈ ℂ ψ†(x)

ψ*α (x) ψ̄α(x) ≡ ψ†(x)γ0

δS[ψ̄, ψ]
δψ̄α(x)

=
δS[ψ̄, ψ]
δψα(x)

= 0

(i /∂ − m)ψ(x) = ψ̄(x)(−i /∂ − m) = 0
ψα ψ̄α

πα(x)=δL /δ ·ψα(x)=∂ℒ/∂ ·ψα(x)= iψ†
α(x)= i(ψ̄(x)γ0)α , π̄α(x)=δL /δ ·̄ψα(x)=∂ℒ/∂ ·̄ψα(x)=0

π̄ = 0

H = ∫ d3x ∑α [ ·ψαπα + ·̄ψαπ̄α] − L = ∫ d3x [∑α ( ·ψαπα + ·̄ψαπ̄α) − ℒ]

= ∫ d3x [iψ̄γ0∂0ψ − ψ̄(i /∂ − m)ψ] = ∫ d3x ψ̄[−iγ ⋅ ∇ + m]ψ = ∫ d3x ℋ .

πμ
α ≡ ∂ℒ/∂(∂μψα) = i(ψ̄γμ)α and π̄μ

α ≡ ∂ℒ/∂(∂μψ̄α) = 0

Tμ
ν = πμ ∂νψ + π̄μ ∂νψ̄ = iψ̄γμ∂νψ where ∂μTμ

ν = 0
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The four conserved charges are the , where we find that

 .


Since  on-shell then we can write the on-shell Hamiltonian as




The total conserved three-momentum is given by

 .


The Dirac action is Lorentz invariant by construction and we have a conserved angular momentum tensor





where   . The angular momentum is conserved and is given by


 .


Applying Dirac correspondence principle at this point leads to the wrong outcome

 .


The simplest thing to do is to simply replace the commutators with anticommutators because we are 
dealing with fermions and then hope everything works out OK, which it does.

More careful canonical argument: The above cavalier argument leads to the right outcome! It is not 
possible to give details here (see Sec 6.3.6). In brief, if we use the full Dirac-Bergmann algorithm and 
introduce anticommuting (Grassmann) classical fermion fields we correctly arrive at these same results 
and all symmetries, Noether currents and the Poincaré Lie algebra are preserved.

̂Pμ

Pν = (H, P) = ∫ d3x T0ν = ∫ d3x iψ̄γ0∂νψ = ∫ d3x iψ†∂νψ
(i /∂ − m)ψ = 0

H = ∫ d3x iψ†∂0ψ = ∫ d3x ψ†(−iα⋅∇ + βm)ψ = ∫ d3x ψ̄[−iγ⋅∇ + m]ψ

P = ∫ d3x ψ†(−i∇)ψ

Mρσ = ∫ d3x [(xρT0σ − xσT0ρ) + πα(Σαβ)ρσψβ + π̄α(Σαβ)ρσψ̄β]
= ∫ d3x [(xρiψ†∂σψ − xσiψ†∂ρψ) + iψ†

α(Σαβ)ρσψβ]

= ∫ d3x iψ† (xρ∂σ−xσ∂ρ+frac14[γρ, γσ]) ψ = ∫d3x ψ† (xρi∂σ−xσi∂ρ+Σμν
Dirac) ψ ,

iΣρσ ≡ Σρσ
Dirac = 1

2 σρσ = i
4 [γρ, γσ]

J = (M23, M31, M12) = ∫ d3x ψ† (x × (−i∇) + S) ψ = ∫ d3x ψ† (x × (−i∇) + 1
2 (σ 0

0 σ)) ψ

[ψ̂α(x), ψ̂†
β(y)] = δαβδ3(x − y) and [ψ̂α(x), ψ̂β(y)] = [ψ̂†

α(x), ψ̂†
β(y)] = 0
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With the previous arguments we have arrived at the normal-ordered four-momentum and angular 
momentum tensor


 ,


where for example    .


The Dirac action  is invariant under global phase transformations since if  then 
 and so  . The corresponding Noether current can be written as


 ,

where we have chosen the conventional sign for the current. The normal-ordered current density operator 
will also be conserved since it differs by a constant and so


 .

The corresponding conserved charge operator is


  ,

which is the fermion number operator minus the antifermion number operator. 


We can prove (as expected) that the Poincaré Lie algebra survives in the quantum field theory


 .


The conserved charge operators  and  are the generators of a unitary representation of the 
translations and Lorentz transformations respectively,       .

̂Pμ = ∫ d3x : iψ̂†(x)∂μψ̂(x) : , M̂μν = ∫ d3x : iψ̂† (xμ∂ν − xν∂μ + 1
4 [γμ, γν]) ψ̂ :

̂Pμ = (Ĥ, P̂) = ∫ (d3p/(2π)3)∑s pμ(b̂s†
p b̂s

p + ̂ds†
p

̂ds
p)

S[ψ, ψ̄] ψ(x) → eiαψ(x)
ψ̄(x) → e−iαψ̄(x) S[ψ, ψ̄] → S[ψ, ψ̄]

jμ = − ∑β [Φβ(x)πμ
β (x) + Φ̄β(x)π̄μ

β(x)] = − ∑β (iψβ)(−i[ψ̄γμ]β) = ψ̄γμψ

̂jμ(x) ≡: ̂̄ψ(x)γμψ̂(x) : with ∂μ
̂jμ = 0

Q̂ = ∫ d3x ̂j 0(x) = ∫ d3x : ψ̂†(x)ψ̂(x) : = ∫ (d3p/(2π)3)∑s (b̂s†
p b̂s

p − ̂ds†
p

̂ds
p) ≡ N̂b − N̂d = N̂

[ ̂Pμ, ̂Pν] = 0 , [ ̂Pμ, M̂ρσ] = i(gμρ ̂Pσ − gμσ ̂Pρ) ,
[M̂μν, M̂ρσ] = i(gνρM̂μσ − gμρM̂νσ − gνσM̂μρ + gμσM̂νρ)

̂Pμ M̂μν

Û(a) = ei ̂P⋅a and Û(Λ) = e−(i/2)ωμνM̂μν
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Feynman fermion propagator: The fermion propagator (or Green’s function) satisfies by definition




and the solution to this with the correct Feynman boundary conditions is


 .


Grassmann algebra: It is not possible to discuss this topic in detail but the generators, , of a 
Grassmann algebra anticommute . They can be thought of as anticommuting -numbers. 
They arise because the allow a representation of fermion Fock space, i.e., we can identify   with an 
occupied fermion state . So we can represent  with the Grassmann product  . 

Note that even Grassmann elements commute with everything, e.g., .

The rules of Grassmann algebra allow a representation of actions in fermion Fock space (see Sec. 6.3.2 
for details). The (left) Grassmann derivative satisfies 


 


and the definition of Grassmann integration is


 ,


which has similarities with Grassmann differentiation.

(i /∂y − m)SF(y − x) = iδ4(y − x)

SF(x − y) ≡ ⟨0 |T[ψ̂(x) ̂̄ψ(y)] |0⟩ = ∫
d4p

(2π)4

i(/p + m)
p2 − m2 + iϵ

e−ip⋅(x−y) ≡ ∫
d4p

(2π)4
SF(p)e−ip⋅(x−y)

ai
{ai, aj} = 0 c

ai
i |bi1bi2…bin⟩ ai1ai2…ain

(aiaj)ak = ak(aiaj)

∂
∂ai

1 ≡ 0 ,
∂

∂ai
aj ≡ δij ,

∂
∂ai

aj≡ − aj
∂

∂ai
if i ≠ j ,

∂
∂ai

∂
∂aj

= −
∂

∂aj

∂
∂ai

∫ dai 1 ≡ 0 , ∫ dai aj ≡ −∫ aj dai = δij , {ai, daj} ≡ {dai, daj} ≡ 0
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Fermion spectral function: The spectral function for fermions can be expressed in terms of a Grassman 
functional integral over both the Grassman-valued field  and the Grassmann-valued field . The fermion 
action  is an even Grassman element and so commutes with everything. The spectral function can 
be shown to be


 .


We can generalize this by adding source terms  and  which are also Grassmann-valued and so 
anticommuting.


      where


 .


Fermion generating functional: Defining the generating functional in the usual way we have





For a free fermion field we can write  and perform 
the fermion functional integral exactly to arrive at


 .

ψ ψ̄
S[ψ̄, ψ]

F(t′￼′￼− t′￼) = ∫ 𝒟ψ̄𝒟ψ eiS[ψ̄,ψ] , where S[ψ̄, ψ] = ∫ t′￼′￼
t′￼
dt∫d3x ψ̄(x)(i /∂ − m)ψ(x)

η(x) η̄(x)

F η̄η(t′￼′￼, t′￼) = tr{Û η̄η(t′￼′￼, t′￼)} = ∫ 𝒟ψ̄𝒟ψ eiS[ψ̄,ψ,η̄,η] ,
S[ψ̄, ψ, η̄, η] ≡ S[ψ̄, ψ]+ ∫ d4x [η̄ψ + ψ̄ η] = ∫ t′￼′￼

t′￼
d4x [ℒ + η̄ψ + ψ̄ η]

Z[η̄, η] ≡ lim
T→∞(1−iϵ)

F η̄η(T, − T )
F(T, − T )

= lim
T→∞(1−iϵ)

tr{Û η̄η(T, − T )}
tr{Û(T, − T )}

= lim
T→∞(1−iϵ)

tr [Te−i ∫T
−T d4x [ℋ̂−η̄ψ̂− ̂̄ψη]

tr [Te−i ∫T
−T d4x ℋ̂]

= lim
T→∞(1−iϵ)

⟨0 |Tei ∫T
−T d4x [η̄ψ̂I+ ̂̄ψIη] |0⟩
⟨0 |0⟩

= lim
T→∞(1−iϵ)

∫ 𝒟ψ̄𝒟ψ eiS[ψ̄,ψ,η̄,η]

∫ 𝒟ψ̄𝒟ψ eiS[ψ̄,ψ]
.

S[ψ̄, ψ] = ∫ d4x d4y ψ̄(x)[(i /∂x − m)δ4(x − y)] ψ(y)

Z[η̄, η] ≡
∫ 𝒟ψ̄𝒟ψ eiS[ψ̄,ψ]+i ∫ d4x [η̄(x)ψ(x)+ψ̄(x)η(x)]

∫ 𝒟ψ̄𝒟ψ eiS[ψ̄,ψ]
= exp {− ∫ d4x d4y η̄(x)SF(x − y)η(y)}
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Using these results we arrive at


 ,


which recovers the earlier result that  . The general result is





where the factor  antisymmetrizes the product or propagators appropriately under pairwise particle 
exchange as it should. Thus the fermion version of Wick’s theorem includes the . For further detail 
see Sec 6.3.8.


This brings us to the end of our quick survey of the quantum field theory of Dirac fermions.


⟨0 |T ψ̂(x) ̂̄ψ(y) |0⟩ =
δ2

δη(x)δη(y)
Z[η̄, η]

η=η=0

=
∫ 𝒟ψ̄𝒟ψ ψ(x)ψ̄(x)eiS[ψ̄,ψ]

∫ 𝒟ψ̄𝒟ψ eiS[ψ̄,ψ]
= SF(x − y)

⟨0 |T ψ̂(x) ̂̄ψ(y) |0⟩ = SF(x − y)

⟨0 |T ψ̂(x1)…ψ̂(xn) ̂̄ψ(y1)… ̂̄ψ(ym) |0⟩ = (−i)min δm+n

δη̄(x1)…δη̄(xm)δη(y1)…δη(yn)
Z[η̄, η]

η̄=η=0

= δmnΣk1,…,km
ϵk1,…,kmSF(x1 − yk1

)SF(x2 − yk2
)…SF(xm − ykm

) .
ϵk1,…,km

ϵk1,…,km
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Canonical quantization of the electromagnetic field: A careful construction of the Hamiltonian 
formulation of electromagnetism as carried out in Chapter 3, Sec. 3.3.2. This was necessary because as 
we observed earlier electromagnetism is a singular system. Using the Coulomb gauge the construction of 
the relevant Dirac brackets was made and two constraints emerged that reduced the four degrees of 
freedom in  to the two degrees of freedom of the electromagnetic field. It was shown that the 
appropriate canonical quantization relations are then




where the transverse delta function is defined as


 .


The Hamiltonian operator for the system is


 ,


where the term containing  vanishes when acting on states in the physical 
subspace, i.e., the physical subspace is the null space of the operator  and of the Coulomb 
gauge operator . This ensures that Coulomb’s law and the gauge fixing conditions are always 
satisfied,    and    . We can explicitly verify that this canonical quantization 
reproduces Maxwell’s equations at the operator level as it should,


Aμ

[ ̂Ei(x), ̂Ej(y)]x0=y0 = [ ̂Ai(x), ̂Aj(y)]x0=y0 = 0 , and [ ̂Aj(y), ̂Ei(x)]x0=y0 = − iδtr
ij (x − y) ,

δtr
ij (x − y) ≡ ∫ [d3k /(2π)3] eik⋅(x−y) [δij − (kikj /k2)]

Ĥ = ∫ d3x [ 1
2 (Ê2 + B̂2) − (∇ ⋅ Ê − j0)A0 − j ⋅ Â]

∇ ⋅ Ê − j0 = ∇ ⋅ Ê − ρ
∇ ⋅ Ê − j0

∇ ⋅ Â
∇ ⋅ E = ρ ∇ ⋅ A = 0

Faraday's law: ∇ × Ê = −
·
B̂ , Gauss' magnetism law: ∇ ⋅ B̂ = 0 ,

Gauss' law: ∇ ⋅ Ê = ρ , Ampere's law: ∇ × B̂ − j =
·
Ê .
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Fock space for photons: Since photons are bosons the commutation relations for the annihilation and 
creation operators are


 ,

where  label the polarization state of the photon state.


The normal-ordered Hamiltonian and number operators are then





Here  is the energy of a photon with three-momentum  and polarization  and

 is the corresponding occupation number density. The operator  measures the total number of


photons. Since , the free vacuum state  has  zero energy and zero photons. For a free 
electromagnetic field take  since in Coulomb gauge Gauss’ law leads to 


 .


The polarization three-vectors are orthogonal to  and orthonormal to each other,

 .


Since satisfying  we can write expand the field operator in terms of the plane wave states 
(normal modes) as


 .

[ ̂aλ
k, ̂aλ′￼

k′￼] = [ ̂aλ†
k , ̂aλ′￼†

k′￼] = 0 and [ ̂aλ
k, ̂aλ′￼†

k′￼] = (2π)3δλλ′￼δ3(k − k′￼)
λ = 1,2

Ĥ = ∫
d3k

(2π)3
∑2

λ=1 ωk ̂aλ†
k ̂aλ

k = ∫ d3k ∑2
λ=1 ωkN̂λ

k = ∫ d3k ∑2
λ=1 EkN̂k ,

N̂λ
k ≡

1
(2π)3

̂aλ†
k ̂aλ

k and N̂ ≡ ∫ d3k ∑2
λ=1 N̂λ

k .

ωk ≡ Ek = k2 k λ = 1,2
N̂λ

k N̂
̂aλ†
k |0⟩ = 0 |0⟩

A0 = 0
Φ(x) = A0(x) =

1
4π ∫

ρ(t, x′￼)
|x − x′￼|

d3x′￼

k
ϵ(k, λ) ⋅ k = 0 and ϵ(k, λ) ⋅ ϵ(k, λ′￼) = δλλ′￼

∇ ⋅ Â = 0

Â(x) = ∫ (d3k /(2π)3)(1/ 2ωk)∑2
λ=1 ϵ(k, λ)( ̂aλ

keik⋅x + ̂aλ†
k e−ik⋅x)
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Normal-ordered Hamiltonian: The result is that everything is consistent and we verify that the normal-
ordered  is 


 .


In Coulomb gauge in the quantization inertial frame for a free photon  and so we can write

 ,


where we have defined

 .


We can write  or  for the linear polarization and helicity bases respectively.


Functional integral for photons: This is discussed in detail in Secs. 6.4.3 and 6.4.4 but is too lengthy to 
try and summarize here. It is complicated by the need to restrict the physical space with the two 
constraints of Coulomb’s law and Coulomb gauge. It is possible to generalize the argument to other 
gauges including especially covariant gauges that we will soon discuss. Covariant gauges maintain 
manifest Lorentz covariance during all stages of calculations and so are very convenient.


Arbitrary covariant gauge: It can be shown that we can quantize in an arbitary covariant gauge using

for the spectral function with a source


 


We refer to the arbitrary real  as the  gauge parameter, where  is called Feynman gauge and 
 is called Landau gauge.

Ĥ
Ĥ = ∫ d3x : ̂πi∂0

̂Ai − ℒ : = ∫ d3x 1
2 : Ê2 + B̂2 : = ∫ [d3k /(2π)3]ωk∑λ ̂aλ†

k aλ
k

̂A0(x) = 0
̂Aμ(x) = ∫ (d3k /(2π)3)(1/ 2ωk)∑2

λ=1 (ϵμ(k, λ) ̂aλ
ke−ik⋅x + ϵμ(k, λ)* ̂aλ†

k eik⋅x)
ϵμ(k, λ) ≡ (0, ϵ(k, λ)) for λ = 1,2

λ = 1,2 λ = ± 1

Fj(t′￼′￼, t′￼) = ∫𝒟Aμ
periodic exp[i{Sξ[A] − ∫ d4xjμAμ}] , where

Sξ[A] ≡ ∫ d4x { − (1/4)FμνFμν − (1/2ξ)(∂μAμ)2} .
ξ Rξ ξ = 1

ξ = 1
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Photon generating functional: We define the generating functional in the usual way as


 


For the free photon case we can write the action in a quadratic form 





We can then perform the resulting Gaussian functional integrals to give





where  is the covariant Feynman propagator for the photon. We see that 
 since 


Z[ j]≡ lim
T→∞(1−iϵ)

Fj(T, − T )
F(T, − T )

= lim
T→∞(1−iϵ)

tr{Ûj(T, − T )}
tr{Û(T, − T )}

= lim
T→∞(1−iϵ)

∫𝒟Aμ
periodic ei{Sξ[A]− ∫T

−T d4x jμAμ}

∫𝒟Aμ
periodic eiSξ[A]

Sξ[A] = ∫ d4x {− 1
2 (∂μAν∂μAν − ∂μAν∂νAμ) − 1

2ξ (∂μAμ)2}

= ∫ d4x d4y δ4(x − y) 1
2 {−∂x

μAν(x)∂μ
y Aν(y) + ∂μ

x Aν(x)∂ν
yAμ(y) − 1

ξ ∂μ
x Aμ(x)∂ν

yAν(y)}

= ∫ d4x d4y 1
2 Aμ(x)[{gμν∂2

x−[1− 1
ξ ]∂μ

x∂ν
x}δ4(x−y)]Aν(y) ≡ ∫ d4x d4y 1

2 Aμ(x)Kμν(x, y)Aν(y) .

Z[ j] = exp {− 1
2 ∫ d4x d4y jμ(x)Dμν

F (x − y)jν(y)} , where

Dμν
F (x − y) ≡ ∫

d4k
(2π)4

i
k2 + iϵ (−gμν + (1 − ξ)

kμkν

k2 + iϵ ) e−ik⋅(x−y) ≡ ∫
d4k

(2π)4
Dμν

F (k)e−ik⋅(x−y) ,

Dμν
F (x − y)

Dμν
F (x − y) = i(K−1)μν(x, y)
{gμν∂2

x − [1 − 1
ξ ]∂μ

x∂ν
x}DFνρ(x − y) = iδμ

ρδ4(x − y) , which gives

∫d4y Kμν(x, y)DFνρ(y − z) = iδμ
ρδ4(x − z) .
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We then recover as expected


 .


As for the free scalar field case taking  derivatives vanishes unless  is even and gives the sum of every 
pairwise contraction of the  pairs in the product of  photon propagators as it should for bosons. 


Covariant canonical quantization: This is discussed in detail in Sec. 6.4.5 and is referred to as the 
Gupta-Bleuler formalism. It uses Feynman gauge and also attempts to impose the covariant Lorenz 
gauge-fixing condition  to make the approach work. However we immediately have a conflict 
with the required canonical commutation relations for bosons. The Gupta-Bleuler approach imposes the 
weaker Lorenz gauge condition on the physical subspace that


 ,


where  with  and  corresponding to the annihilation (positive frequency)

and creation (negative frequency) parts of  respectively. The procedure is successful and leads t


 , 

which is the Feynman gauge propagator.

⟨Ω |T ̂Aμ1(x1)⋯ ̂Aμk(xk) |Ω⟩ =
(i)k δk

δjμ1
(x1)⋯δjμk

(xk)
Z[ j]

j=0
= lim

T→∞(1−iϵ)

∫𝒟Aμ
periodic Aμ1(x1)⋯Aμk(xk) eiSξ[A]

∫𝒟Aμ
periodic eiSξ[A] .

Dμν
F (x − y) = ⟨Ω |T ̂Aμ1(x1)⋯ ̂Aμk(xk) |Ω⟩ = (i)2 δ2

δjμ(x)δjν(y)
Z[ j]

j=0

k k
μj, xj k /2

∂μ
̂Aμ = 0

∂μ
̂A(+)
μ (x) |Ψ⟩ = 0 and ⟨Ψ |∂μ ̂A(−)

μ (x) for all |Ψ⟩ ∈ VPhys
̂Aμ ≡ ̂A(+)

μ + ̂A(−)
μ

̂A(+)
μ

̂A(−)
μ

̂Aμ
⟨0 |T ̂Aμ(x) ̂Aν(y) |0⟩ = − gμνDF(x − y) = Dμν

F (x − y)


