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Normal modes: The derivation of normal modes for small oscillations around a static stable equilibrium 
for a classical systems was discussed in Chapter 2, Sec. 2.3.  We denote the normal modes as , 
where  for a system with degrees  of freedom. The effective Lagrangian and effective 
Hamiltonian are 

 . 

The normal mode conjugate momenta are  and the normal modes satisfy the harmonic 
oscillator equations of motion,  . Any small oscillation around this stable equilibrium can be 
expressed as a linear superposition of the normal modes. 

Quantization of normal modes:  In Dirac’s canonical quantization program the fundamental Poisson 
brackets become 

  . 
We have the normal mode Hamiltonian in quantum mechanics 

 , 

where ,  and  are the normal mode Hermitian coordinate operator, the Hermitian conjugate 
momentum operator and the angular frequency of the  normal mode respectively. An example of such 
quantized normal modes are the phonons of a crystalline solid, which arise from the quantized normal 
modes of the small oscillations of the ionic lattice of the crystal. 

⃗ζ(t)
⃗ζ = (ζ1, …, ζN) N

L =∑N
j=1

1
2 ( ·ζ2

j −ω2
j ζ2

j ) , H=∑N
j=1

1
2 (π2

j +ω2
j ζ2

j )=∑N
j=1

1
2 ( ·ζ2

j +ω2
j ζ2

j )
πj ≡ ∂L /∂ ·ζj = ·ζj··ζj + ω2

j ζ2
j = 0

[ ̂ζj(t), ̂ζk(t)] = [ ̂πj(t), ̂πk(t)] = 0 and [ ̂ζj(t), ̂πk(t)] = iℏδjk
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Define the annihilation and creation operators as 

 . 

Then we have   and 

 , 

 , 
 , 

where  is the quantum Hamiltonian,  is the total number operator and  is the number operator for 
the  normal mode. Define the number eigenstates (the occupancy number basis) as  

 , 
 which satisfies 

  

where  is referred to as the zero-point energy.  
It follows that  

         with         . 

So  we see that  
 and   create and annihilate  respectively a quasiparticle in the  normal mode.
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So we see that we can form any occupation number basis state using 
 . 

Observation: It seems reasonable to contemplate the possibility that what we think of as the classical 
vacuum is some stable equilibrium of a larger underlying theory, where what we think of as free particles 
are the quasiparticles of an effective free quantum theory built on that vacuum. Interactions are analogous 
to deviations from purely quadratic behavior.  

Use of natural units: From this point on we will be using natural units,     , where  is 
Boltzmann’s constant. We may occasionally explicitly restore these constants when it is important to 
motivate a discussion. These quantities can always be restored from expressions in natural units using 
dimensional arguments. 

Free quantized scalar field: A scalar particle is a boson (i.e., a particle that satisfies Bose-Einstein 
statistics) with zero spin. The quantized normal  modes of the relativistic classical scalar field are the 
scalar particles of quantum field theory. 
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Recall the Lagrangian density of a free classical real scalar field, 
 

As we saw the corresponding Euler-Lagrange equation of motion is the Klein-Gordon 
equation given in \Eq{Eq:KG_eqn_class}, 

 . 
Were it not for the  term these equations of motion would correspond to having one harmonic 
oscillator at each spatial point . So this system correspond to an infinite number of 
coupled harmonic oscillators. We also recall the Hamiltonian density from earlier, 

 

According to Dirac's canonical quantization procedure we should use the Correspondence Principle we 
should use the fundamental Poisson brackets for a classical scalar field theory,  

 . 
to arrive at the equal-time canonical commutation relations (ETCR) for the quantum field theory, 

 , 
where these are the Heisenberg picture operators. The operators will then obey the same equations of 
motion as their classical counterparts. Recall that for a Hamiltonian with no explicit time dependence a 
Heisenberg picture operator, , is related to its Schrödinger picture (denoted ) form  by 

 
where the reference time  is the arbitrary time at which the two pictures coincide.
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For a free scalar field the normal modes are the plane wave solutions, , of the KGE, 
 , 

where . We have the correspondences to the discrete mechanics case 
 , 

which leads to 

 

From Dirac’s canonical quantization procedure we arrive at (in the Schrödinger representation) 
 . 

This leads to the creation and annihilation operator commutation relations 
  

in analogy with the mechanics case. The number density operator for the normal mode labeled by  is 

 

The number operator, , includes all normal modes, 
 .

ϕp(x, t)
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The Hamiltonian is given by 

 

where the very last term is the infinite zero-point energy,

 . 

Subtracting a constant from the Hamiltonian has no physical consequence and so we can always do this. 
It is then convenient to define normal ordering, where all of the creation operators in a product are moved 
to the left of all of the annihilation operators. The normal ordered form of an operator  is denoted  
and we then have for example, 

 . 
Normal ordering is not a linear operation and we define for example 
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Since  and  then any normal-ordered operator containing at least one  or  will 
have a vanishing vacuum expectation value, . 

So we simply redefine the Hamiltonian to be its normal-ordered form, 

 

which satisfies  . Similarly the three-momentum operator to be its normal-ordered form, 
     which satisfies       . 

In summary we can write    and    . 

Using  the earlier commutation relations for ,  and  it is then relatively simple to show that 

 

Note that 
 .
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This result generalizes to 
 

Normalization of states: The single boson state with three-momentum  and energy  
is defined to have the normalization 

 ,     which leads to the result that       . 

Summary: Each application of  creates an on-shell particle with energy  
and momentum  and so  is a creation operator.  Conversely, each application of  removes an on-
shell particle with energy if there is one and so  is an annihilation (or destruction)} operator. If there is 
no corresponding particle to annihilate, then  acting on the state gives zero. 

Fock space: The space of all free particle states is referred to as Fock space, which is the Hilbert space 
for the free field. A symmetrized state is an immediate consequence of applying normalized one-boson 
creation operators to give  

 . 

The state obeys Bose-Einstein statistics (symmetric under particle exchange) since all of the creation 
operators  commute with each other. The set of all such states for different momenta  and particle 
(boson) number  are a basis for Fock space. The set of all  for some fixed  form a basis for the 
-boson subspace of the Fock space. 

⟨0 | ̂apn
⋯ ̂ap1

̂a†
q1

⋯ ̂a†
qn

|0⟩ = (2π)3n[δ3(p1 − q1)⋯δ3(pn − qn) + all permutations of (q1⋯qn)] .

p Ep = (p2 + m2)1/2

|p⟩ ≡ 2Ep ̂a†
p |0⟩ ⟨p |q⟩ = 2Ep(2π)3δ3(p − q)

̂a†
p Ep = ( |p |2 + m2)1/2

p ̂a†
p ̂ap

̂ap
̂ap

n

|p1p2⋯pn⟩ ≡ 2n/2 Ep1
Ep2

⋯Epn
̂a†
p1

̂a†
p2

⋯ ̂a†
pn

|0⟩

̂a†
p pj

n pj n n
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The combination  is Lorentz invariant, , [see proof of Eq. (6.2.50)] and we can 
show that for any Lorentz invariant function of four-momentum , , we have the result that 

 . 

It also follows that the field operator acting on the vacuum creates a one-particle state at , 

 . 

Lagrangian and equations of motion: Dirac’s canonical quantization program leads to the operator 
Lagrangian and equations of motion 

d3p/Ep d3p′ /Ep′ = d3p/Ep
g(p)

∫
d3p

(2π)3

1
2Ep

g(p) |p0=±Ep
= ∫

d4p
(2π)4

(2π)δ(p2 − m2)g(p)
p0≷0

x
̂ϕ(x) |0⟩ = ∫

d3p
(2π)3

1

2Ep

eip⋅x ̂a†
p |0⟩ = ∫

d3p
(2π)3

1
2Ep

eip⋅x
p0=Ep

|p⟩

Ĥ ≡ ∫ d3x ℋ̂ ≡ ( ∫ d3x ̂π(x)
· ̂ϕ(x)) − L̂ = ∫ d3x ( ̂π(x)

· ̂ϕ(x) − ℒ̂)
̂π(x) ≡

δL̂
δ(∂0

̂ϕ)(x)
=

∂ℒ̂
∂(∂0

̂ϕ)(x)
and ∂μ ( ∂ℒ̂

∂(∂μ
̂ϕ)(x) ) −

∂ℒ̂
∂ ̂ϕ(x)

= 0 .
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We also recover the four-momentum and angular momentum operators as before which obey the 
Poincaré Lie algebra in operator form in terms of commutators, 

 

Where we have a unitary representation of the translation operator and the restricted Lorentz 
transformations of  given respectively by 

 . 

Causality and spacelike separations: For space like separations we can show 
              [see proof of Eq. (6.2.144)] . 

So the field operator commutes with itself whenever the spacetime points have a spacelike separation. 
This is the condition of causality in that the measurement of the field at point  cannot affect the 
measurement of the field at point for a spacelike separation. 

Time-ordering operator:  Recall the time-ordering operator introduced in Lecture 1, 
 .

̂Tμν(x) = ̂ ⃗πμ ⋅ ∂ν ̂ ⃗ϕ − gμνℒ̂ ,

̂Pμ = ∫d3x ̂T0μ(x) = (Ĥ, P̂) with Ĥ = ∫d3x [ ̂ ⃗π ⋅ ∂0 ̂ ⃗ϕ − ℒ̂] , ̂Pi = ∫d3x ̂ ⃗π ⋅ ∂i ̂ ⃗ϕ ,

M̂μν = ∫d3x [xμ ̂T0ν(x) − xν ̂T0μ(x)] ,

[M̂μν, M̂ρσ] = i(gνρM̂μσ − gμρM̂νσ − gνσM̂μρ + gμσM̂νρ) ,
[ ̂Pμ, M̂ρσ] = i(gμρ ̂Pσ − gμσ ̂Pρ) , [ ̂Pμ, ̂Pν] = 0 .

SO+(1,3)
Û(a) = ei ̂P⋅a and Û(Λ) = e−(i/2)ωμνM̂μν

iΔ(x − y) ≡ [ ̂ϕ(x), ̂ϕ(y)] = 0 for all (x − y)2 < 0

x
y

T ̂A(x)B̂(y) ≡ θ(x0 − y0) ̂A(x)B̂(y) + θ(y0 − x0)B̂(y) ̂A(x)
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Feynman propagator: The Feynman propagator for the scalar field is defined as the vacuum expectation 
value (vev) of the time-ordered product of two field operators, 

 , 

where the result on the right-hand side is obtained after a little work [see proof of Eq. (6.2.153)] and 
where  is the momentum-space Feynman propagator. The  in  the 
denominator results from analytically continuing back from Euclidean space and acts as a damping term 
in the functional integral. It has the same origin as it did in quantum mechanics. 

We can decompose the positive and negative energy parts of the field as , where 

 . 

We see that  . 

Contractions: We define the contraction of two field operators as 

It then follows that  

DF(x−y) ≡ ⟨0 |T ̂ϕ(x) ̂ϕ(y) |0⟩ = ∫
d4p

(2π)4

i
p2 − m2 + iϵ

e−ip⋅(x−y) ≡ ∫
d4p

(2π)4
DF(p)e−ip.x

DF(p) ≡ i/(p2 − m2 + iϵ) iϵ

̂ϕ(x) = ̂ϕ+(x) + ̂ϕ−(x)
̂ϕ+(x) ≡ ∫

d3p
(2π)3 (1/ 2Ep) ̂ape−ip⋅x and ̂ϕ−(x) ≡ ∫

d3p
(2π)3 (1/ 2Ep) ̂a†

peip⋅x

̂ϕ+(x) |0⟩ = 0 , ⟨0 | ̂ϕ−(x) = 0 ⇒ ⟨0 | ̂ϕ(x) ̂ϕ(y) |0⟩ = ⟨0 | ̂ϕ+(x) ̂ϕ−(y) |0⟩

446 Formulation of Quantum Field Theory

Recalling that we have h0|f̂pf̂†
p0 |0i = h0|[f̂p, f̂†

p0 ]|0i = (2⇡)3�3(p � p0) and similarly

for h0|ĝpĝ†
p0 |0i it follows that

h0|T �̂(x)�̂†(y)|0i = ✓(x0 � y0)h0|�̂(x)�̂†(y)|0i + ✓(y0 � x0)h0|�̂†(y)�̂(x)|0i

=

Z
d3p d3p0

(2⇡)6
1

2
p

EpEp0

h
✓(x0 � y0)h0|f̂pf̂†

p0 |0ie�ip·x+ip0·y

+✓(y0 � x0)h0|ĝp0 ĝ†
p|0ie+ip·x�ip0·y

i

=

Z
d3p

(2⇡)3
1

2Ep

h
✓(x0 � y0)e�ip·(x�y) + ✓(y0 � x0)e+ip·(x�y)

i

= ✓(x0 � y0)�+(x � y) + ✓(y0 � x0)�+(y � x)

= DF (x � y) , (6.2.198)

where we see that the Feynman propagator propagates a particle with positive
charge forward in time or an antiparticle with negative charge backwards in time.
Note that if we had chosen to define �̂0(x) ⌘ �̂†(x) then the roles of fp and gp
would be reversed.

6.2.8 Wick’s theorem

For an hermitian scalar field �̂(x) we can write �̂(x) = �̂+(x) + �̂�(x), where

�̂+(x) ⌘
Z

d3p

(2⇡)3
1p
2Ep

âpe�ip·x and �̂�(x) ⌘
Z

d3p

(2⇡)3
1p
2Ep

â†
peip·x , (6.2.199)

which are the positive energy and negative energy parts respectively. We have

�̂+(x)|0i = 0 , h0|�̂�(x) = 0 ) h0|�̂(x)�̂(y)|0i = h0|�̂+(x)�̂�(y)|0i . (6.2.200)

For x0 > y0 we have

T �̂(x)�̂(y)
x0>y0

= �̂+(x)�̂+(y) + �̂+(x)�̂�(y) + �̂�(x)�̂+(y) + �̂�(x)�̂�(y)

= �̂+(x)�̂+(y) + �̂�(y)�̂+(x) + �̂�(x)�̂+(y) + �̂�(x)�̂�(y) + [�̂+(x), �̂�(y)]

= :�̂(x)�̂(y): + [�̂+(x), �̂�(y)] , (6.2.201)

where the normal-ordering in Eq. (6.2.29) was used. For x0 < y0 we have

T �̂(x)�̂(y)
x0<y0

= �̂+(y)�̂+(x) + �̂+(y)�̂�(x) + �̂�(y)�̂+(x) + �̂�(y)�̂�(x)

= �̂+(x)�̂+(y) + �̂�(x)�̂+(y) + �̂�(y)�̂+(x) + �̂�(x)�̂�(y) + [�̂+(y), �̂�(x)]

=: �̂(x)�̂(y) : +[�̂+(y), �̂�(x)] . (6.2.202)

The contraction or Wick contraction of two field operators is defined as

�̂(x)�̂(y) ⌘
(

[�̂+(x), �̂�(y)] for x0 > y0

[�̂+(y), �̂�(x)] for x0 < y0 . (6.2.203)
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With this definition of a contraction we can write

T �̂(x)�̂(y) = :�̂(x)�̂(y): + �̂(x)�̂(y) . (6.2.204)

Using Eq. (6.2.138) for �+(x � y) we observe that

[�̂+(x), �̂�(y)] =

Z
d3p

(2⇡)3
1p
2Ep

Z
d3q

(2⇡)3
1p
2Eq

e�ip·x+iq·y ⇥
âp, â†

q

⇤
(6.2.205)

=

Z
d3p

(2⇡)3
1

2Ep
e�ip·(x�y) = �+(x � y) = h0|�̂(x)�̂(y)|0i .

Similarly [�̂+(y), �̂�(x)] = h0|�̂(y)�̂(x)|0i and so

�̂(x)�̂(y) = ✓(x0 � y0)h0|�̂(x)�̂(y)|0i + ✓(y0 � x0)h0|�̂(y)�̂(x)|0i

= h0|T �̂(x)�̂(y)|0i = DF (x � y) . (6.2.206)

We can write the above in the form

T �̂(x)�̂(y) = :�̂(x)�̂(y): + DF (x � y) = :�̂(x)�̂(y) + DF (x � y):

= :�̂(x)�̂(y) + �̂(x)�̂(y): , (6.2.207)

since the Feynman propagator a complex function una↵ected by normal-ordering.
Wick’s theorem: The generalization of the above result is referred to as Wick’s
theorem and can be written as

T �̂(x1)�̂(x2) · · · �̂(xn) = :{�̂(x1)�̂(x2) · · · �̂(xn) + all contractions}: . (6.2.208)

The meaning of this can be illustrated for the n = 4 case, i.e.,

T �̂(x1)�̂(x2)�̂(x3)�̂(x4) = :
�
�̂(x1)�̂(x2)�̂(x3)�̂(x4) + �̂(x1)�̂(x2)�̂(x3)�̂(x4)

+ �̂(x1)�̂(x2)�̂(x3)�̂(x4) + �̂(x1)�̂(x2)�̂(x3)�̂(x4) + �̂(x1)�̂(x2)�̂(x3)�̂(x4)

+ �̂(x1)�̂(x2)�̂(x3)�̂(x4) + �̂(x1)�̂(x2)�̂(x3)�̂(x4) + �̂(x1)�̂(x2)�̂(x3)�̂(x4)

+ �̂(x1)�̂(x2)�̂(x3)�̂(x4) + �̂(x1)�̂(x2)�̂(x3)�̂(x4)
�
: . (6.2.209)

When we take the vacuum expectation value of this only the fully contracted terms
will survive, since the vacuum expectation value of any normal-ordered product of
operators vanishes, h0| :�̂(x1) · · · �̂(xj): |0i = 0. We then find

h0|T �̂(x1)�̂(x2)�̂(x3)�̂(x4)|0i = DF (x1 � x2)DF (x3 � x4)

+ DF (x1 � x3)DF (x2 � x4) + DF (x1 � x4)DF (x2 � x3) . (6.2.210)

Consequence of Wick’s theorem: The general form of this result follows from
Eq. (6.2.208) and will vanish if n is odd and if n is even has the form

h0|T �̂(x1)�̂(x2) · · · �̂(xn)|0i = DF (x1 � x2)DF (x3 � x4) · · · DF (xn�1 � xn)
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Wick’s theorem: The generalization of this result is referred to as Wick’s Theorem and has the form 
 

For a proof see the proof of Eq. (6.2.208). 

Consider an example of Wick’s theorem  

Taking the vacuum expectation value of this leaves only the fully contracted terms, since the vacuum 
expectation value of any normal-ordered product of operators vanishes, . So 

 . 

Consequence of Wick’s Theorem: The general form of this result is that the vacuum expectation value 
of the time-ordered product of operators will vanish if  is odd and if   is even the result is 

T ̂ϕ(x1) ̂ϕ(x2)⋯ ̂ϕ(xn) = :{ ̂ϕ(x1) ̂ϕ(x2)⋯ ̂ϕ(xn) + all contractions}: .

⟨0 | : ̂ϕ(x1)⋯ ̂ϕ(xj) : |0⟩ = 0
⟨0 |T ̂ϕ(x1) ̂ϕ(x2) ̂ϕ(x3) ̂ϕ(x4) |0⟩ = DF(x1 − x2)DF(x3 − x4)

+ DF(x1 − x3)DF(x2 − x4) + DF(x1 − x4)DF(x2 − x3)

n n
⟨0 |T ̂ϕ(x1) ̂ϕ(x2)⋯ ̂ϕ(xn) |0⟩ = DF(x1 − x2)DF(x3 − x4)⋯DF(xn−1 − xn)

+ all pairwise combinations of (x1, x2, ⋯, xn)
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1

2Ep
e�ip·(x�y) = �+(x � y) = h0|�̂(x)�̂(y)|0i .
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= h0|T �̂(x)�̂(y)|0i = DF (x � y) . (6.2.206)

We can write the above in the form
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= :�̂(x)�̂(y) + �̂(x)�̂(y): , (6.2.207)

since the Feynman propagator a complex function una↵ected by normal-ordering.
Wick’s theorem: The generalization of the above result is referred to as Wick’s
theorem and can be written as

T �̂(x1)�̂(x2) · · · �̂(xn) = :{�̂(x1)�̂(x2) · · · �̂(xn) + all contractions}: . (6.2.208)
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When we take the vacuum expectation value of this only the fully contracted terms
will survive, since the vacuum expectation value of any normal-ordered product of
operators vanishes, h0| :�̂(x1) · · · �̂(xj): |0i = 0. We then find
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Consequence of Wick’s theorem: The general form of this result follows from
Eq. (6.2.208) and will vanish if n is odd and if n is even has the form
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Functional integral formulation: The extension of the path/functional in quantum mechanics to scalar 
quantum field theory is relatively straightforward and we arrive at an analogous result, 

 , 
which leads to the result for the spectral function 

 

The integral is over functions  periodic in space (or vanishing at spatial infinity) and periodic in time.  

Spectral function for a scalar field with a source: Including a source term  for the scalar field 
again leads to a result analogous to that for quantum mechanics for the spectral function with a source , 

 
where we have defined 

 

We will now denote the general vacuum state as  and use that notation in interacting theories and we 
will define it to be normalized such that .  In a free theory we have  .

⟨ϕ′ ′ , t′ ′ |ϕ′ , t′ ⟩ = ⟨ϕ′ ′ | Ĝ(t′ ′ − t′ ) |ϕ′ ⟩ = ⟨ϕ′ ′ |e−iĤt/ℏ |ϕ′ ⟩ = ∫ 𝒟ϕ eiS[ϕ]/ℏ

F(t′ ′ − t′ ) ≡ tr e−iĤ(t′ ′ −t′ )/ℏ = ∫ 𝒟spϕ ⟨ϕ |e−iĤ(t′ ′ −t′ )/ℏ |ϕ⟩ = ∫𝒟spϕ ⟨ϕ, t′ ′ |ϕ, t′ ⟩

= ∫ 𝒟π 𝒟ϕ(periodic) exp{(i/ℏ) ∫ t′ ′ 
t′ 

d4x [π ·ϕ − ℋ(ϕ, π)]}

= ∫ 𝒟ϕ(periodic) exp{(i/ℏ) ∫ t′ ′ 
t′ 

d4x ℒ(ϕ, ∂μϕ} = ∫ 𝒟ϕ(periodic) exp{(i/ℏ)S([ϕ], t′ ′ , t′ )} .
ϕ(x)

j(x)ϕ(x)
j

Fj(t′ ′ , t′ ) = tr{Ûj(t′ ′ , t′ )} = tr{Te−i ∫t′ ′ 
t′ d

4x[ℋ̂−j(x) ̂ϕ(x)]} = ∫ 𝒟ϕ(periodic) eiS[ϕ, j] ,

S[ϕ, j] ≡ S[ϕ]+ ∫ t′ ′ 
t′ 
d4x j(x)ϕ(x) = ∫ t′ ′ 

t′ 
d4x [ℒ+j(x)ϕ(x)] and ℒ = 1

2 [∂μϕ∂μϕ − m2ϕ2] − U(ϕ) .
|Ω⟩

⟨Ω |Ω⟩ = 1 |Ω⟩ = |0⟩
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Generating functional: In analogy with quantum mechanics we define the generating functional  as 

 

Similarly it can then be shown by generalizing the quantum mechanics arguments that the ground state 
expectation value of time-ordered products of Heisenberg picture scalar operators are given by 

 

One commonly finds that the limit  and ``periodic" are not explicitlyindicated but are to be  
understood and that the denominator is sometimes not included in the definition of  , e.g., in Peskin 
and Schroeder. It will later be useful to also define the time-ordered product before taking  , 

 

and so, for example,  .

Z[ j]

Z[ j] ≡ lim
T→∞(1−iϵ)

Fj(T, − T )
F(T, − T )

= lim
T→∞(1−iϵ)

tr{Ûj(T, − T )}
tr{Û(T, − T )}

= lim
T→∞(1−iϵ)

tr [Te−i ∫T
−Td4x [ℋ̂−j ̂ϕ]]

tr [Te−i ∫T
−Td4x ℋ̂]

= lim
T→∞(1−iϵ)

⟨Ω |Tei ∫T
−T d4x j(x) ̂ϕI(x) |Ω⟩ = lim

T→∞(1−iϵ)

∫ 𝒟ϕ(periodic) ei{S[ϕ]+ ∫T
−T d4x jϕ}

∫ 𝒟ϕ(periodic) eiS[ϕ]
.

⟨Ω |T ̂ϕ(x1)⋯ ̂ϕ(xk) |Ω⟩ =
(−i)kδk

δj(x1)⋯δj(xk)
Z[ j]

j=0

= lim
T→∞(1−iϵ)

∫ 𝒟ϕ(periodic) ϕ(x1)⋯ϕ(xk) eiS[ϕ]

∫ 𝒟ϕ(periodic) eiS[ϕ]
.

T → ∞(1 − iϵ)
Z[ j]

j(x) = 0

⟨Ω |T ̂ϕ(x1)⋯ ̂ϕ(xk) |Ω⟩j ≡
(−i)kδk

δj(x1)⋯δj(xk)
Z[ j]

Z[ j] ≡ ⟨Ω |Ω⟩j
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Summary for free scalar field: We have for the Minkowski space action with source that 

 

For a free scalar field we see above that the action is a gaussian and after carrying out the gaussian 
integration over fields we obtain 

 . 

When we evaluate the two-point function we then see that we recover as we should that 
 . 

More generally we recover the result of Wick’s theorem from the free scalar field generating functional 
, since 

 

j(x)
S[ϕ, j] = ∫ d4x { 1

2 ∂μϕ∂μϕ − (m2 − iϵ)ϕ2 + jϕ}
= ∫ d4x d4y [ 1

2 ϕ(x){(−∂x
μ∂xμ − m2 + iϵ) δ4(x − y)} ϕ(y)] + ∫ d4x jϕ

Z[ j] = exp {− 1
2 ∫ d4x d4y j(x) DF(x − y)j(y)}

⟨0 |T ̂ϕ(x) ̂ϕ(y) |0⟩ = DF(x − y)

Z[ j]

⟨0 |T ̂ϕ(x1)… ̂ϕ(xk) |0⟩ = (−i)k δk

δj(t1)⋯δj(tk)
Z[ j]

j=0

= δ[k=even] {DF(x1 − x2)DF(x3 − x4)⋯DF(xk−1 − xk)

+ all pairwise combinations of (x1, x2, ⋯, xk)} .
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Free charged scalar field: We now wish to consider the charged scalar field as a quantum field theory. 
We can write the normal-ordered Lagangian density operator in terms of Heisenberg picture field 
operators as 

  , 

where we have defined     ,and 
where we have the usual cancel commutation relations 

 . 

These can equally be written in terms of the . The only non-vanishing commutators are  
 . 

The operators must obey the same equations as their classical counterparts so we have 

 

The normal-ordered Hamiltonian density is obtained in the usual way 
 

From Noether’s Theorem we recover in the usual way the normal-ordered Hamiltonian and three-
momentum operators, which are given by  

ℒ̂ = 1
2 :[(∂μ

̂ϕ1)2 + (∂μ
̂ϕ2)2 − m2 ̂ϕ2

1 − m2 ̂ϕ2
2]: = :∂μ

̂ϕ†∂μ ̂ϕ − m2 ̂ϕ† ̂ϕ :
̂ϕ(x) ≡ (1/ 2)[ ̂ϕ1(x) + i ̂ϕ2(x)] , ̂ϕ†(x) ≡ (1/ 2)[ ̂ϕ1(x) − i ̂ϕ2(x)]

[ ̂ϕi(t, x), ̂ϕj(t, y)] = [ ̂πi(t, x), ̂πj(t, y)] = 0 , [ ̂ϕi(t, x), ̂πj(t, y)] = iδijδ3(x − y)
̂ϕ, ̂ϕ†, ̂π, ̂π†

[ ̂ϕ(t, x), ̂π(t, x′ )] = [ ̂ϕ†(t, x), ̂π†(t, x′ )] = iδ3(x − x′ )

̂π(x) =
∂ℒ̂

∂(∂0
̂ϕ(x))

= ∂0 ̂ϕ†(x) , ̂π†(x) =
∂ℒ̂

∂(∂0
̂ϕ†(x))

= ∂0 ̂ϕ(x) .

ℋ̂ = :
· ̂ϕ ̂π + ̂π† · ̂ϕ† − ℒ̂ : = : ̂π† ̂π + (∇ ̂ϕ†) ⋅ (∇ ̂ϕ) + m2 ̂ϕ† ̂ϕ :

Ĥ = ∫d3x : ̂π† ̂π + (∇ ̂ϕ†) ⋅ (∇ ̂ϕ) + m2 ̂ϕ† ̂ϕ : ,
̂P = − ∫d3x : ̂π∇ ̂ϕ + ̂π† ∇ ̂ϕ† : .
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We can defined new annihilation and creation operators for particles associated with  (denoted ) 
and antiparticles associated with  (denoted ), 

 

It is straightforward to verify that the commutation relations between the new annihilation and creation 
operators are  

 

Noether current (from phase invariance): From the classical Noether current we  know that we will 
have the conserved normal-ordered Noether current at the operator level, 

 , 

where we have chosen to change the sign of the current remembering that 
we are always free to redefine a conserved current by multiplying it by a constant. 
Conserved charge: The corresponding conserved charge is then 

 

where the number operators for the  and   are respectively defined as 

ϕ ̂fp, ̂f †
p

ϕ† ̂gp, ̂g†
p

̂fp ≡ (1/ 2)[ ̂a1p + i ̂a2p] , ̂f †
p ≡ (1/ 2)[ ̂a†

1p − i ̂a†
2p] ,

̂gp ≡ (1/ 2)[ ̂a1p − i ̂a2p] , ̂g†
p ≡ (1/ 2)[ ̂a†

1p + i ̂a†
2p] .

[ ̂fp, ̂fp′ ]=[ ̂f †
p, ̂f †

p′ ]=[ ̂gp, ̂gp′ ]=[ ̂g†
p, ̂g†

p′ ]=[ ̂fp, ̂gp′ ]=[ ̂fp, ̂g†
p′ ]=[ ̂f †

p, ̂gp′ ]=[ ̂f †
p, ̂g†

p′ ]=0,

[ ̂fp, ̂f †
p′ ]=[ ̂gp, ̂g†

p′ ]=(2π)3δ3(p − p′ ) .

̂jμ(x) = i :[ ̂ϕ†(∂μ ̂ϕ) − (∂μ ̂ϕ†) ̂ϕ] : with ∂μ
̂jμ(x) = 0

Q̂ = ∫ d3x ̂j 0(x) = i ∫ d3x : ̂ϕ†(x) ̂π†(x) − ̂π(x) ̂ϕ(x) : = N̂f − N̂g ≡ N̂ ,
̂ϕ ̂ϕ†

N̂f ≡∫ d3pN̂fp ≡∫
d3p

(2π)3
̂f †
p

̂fp , N̂g ≡ ∫ d3p N̂gp ≡∫
d3p

(2π)3
̂g†
p ̂gp .
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Example of electric charge: The conserved charge can be associated with electric charge when the 
charged scalar field is coupled to the electromagnetic field. In that case if  has electric charge  then  
has charge  and we redefine the charge operator as . Then the total charge is 
the charge of the particles associated with the  field minus the charge of the antiparticles associated 
with the  field. In general particles and antiparticles will have opposite charges. 

Conserved four-momentum: We can similarly show that the normal-ordered four-momentum operator is  
 

and that    . It then follows that   
and so, as expected, the system is invariant under spacetime translations and the charge  is a 
conserved charge as it had to be since .  

Generating functional for complex scalar field: For the complex scalar field we have 

ϕ q ϕ†

−q Q = qN̂ = qN̂f − qN̂g
ϕ

ϕ†

̂Pμ = (Ĥ, P̂) = ∫ d3p pμ[N̂fp + N̂gp] = ∫ (d3p/(2π)3) pμ[ ̂f †
p

̂fp + ̂g†
p ̂gp]

[N̂fp, N̂fp′ ] = [N̂fp, N̂gp′ ] = [N̂gp, N̂gp′ ] = 0 [ ̂Pμ, Ĥ] = [ ̂Pμ, Q̂] = 0
Q̂

[Ĥ, Q̂] = 0

Z[ j, j*] = Z[ j1]Z[ j2] = lim
T→∞(1−iϵ)

∫ (𝒟ϕ1𝒟ϕ2) ei(S[ϕ1, j1]+S[ϕ2, j2])

∫ (𝒟ϕ1𝒟ϕ2) ei(S[ϕ1]+S[ϕ2])

= lim
T→∞(1−iϵ)

∫ (𝒟ϕ𝒟ϕ*) eiS[ϕ,ϕ*, j, j*]

∫ (𝒟ϕ𝒟ϕ*) eiS[ϕ,ϕ*]
.
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Free complex scalar field: In the free case the action is a again quadratic in the fields and we can 
perform the gaussian integration to find 

 

which leads to the important results that 

 

Here  is the same Feynman propagator that we encountered in the hermitian scalar field case.

Z[ j, j*] = Z[ j1]Z[ j2] = exp {− 1
2 ∫ d4x d4y [j1(x) DF(x − y)j1(y) + j2(x) DF(x − y)j2(y)]}

= exp {− ∫ d4x d4y j*(x) DF(x − y)j(y)} ,

⟨0 |T ̂ϕ(x) ̂ϕ†(y) |0⟩ = (−i)2 δ2

δj*(x) δj(y)
Z[ j, j*]

j=0

= lim
T→∞(1−iϵ)

∫ (𝒟ϕ𝒟ϕ*) ϕ(x)ϕ*(y) eiS[ϕ,ϕ*]

∫ (𝒟ϕ𝒟ϕ*) eiS[ϕ,ϕ*]
= DF(x − y) ,

⟨0 |T ̂ϕ(x) ̂ϕ(y) |0⟩ = ⟨0 |T ̂ϕ†(x) ̂ϕ†(y) |0⟩ = 0 .

DF(x − y)


