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For a real classical scalar field we identify one real degree of freedom with each point in three-
dimensional space . So we have the correspondences 

 , 

 , and 
 , 

where  is called the Lagrangian density.  

We will always choose a Lorentz invariant  so that a Lorentz covariant theory will result. The simplest 
such choice corresponds to a free scalar field and is 

. 

For any Lorentz invariant  the action  is also Lorentz invariant since the time dilation of  cancels 
the length contraction in , which means that  is Lorentz invariant. 

Let us again impose Hamilton’s principle, which in this context has the functional derivative form 

 . 

Consider some arbitrary spacetime region  and consider some infinitesimal variation of the field , 
, where we choose  to vanish on the three-dimensional hypersurface  of . 

By definition the functional derivative is 

 .

x
j = 1,2,…, N → x ∈ ℝ3 , ∑N

j=1 → ∫ d3x , qj(t) → ϕ(ct, x) = ϕ(x)
L( ⃗q(t), · ⃗q(t), t) → L(ϕ(x), ∂μϕ(x), x) ≡ ∫ d3x ℒ(ϕ(x), ∂μϕ(x), x)
S[ ⃗q ] = ∫ dt L → S[ϕ] = ∫ dt L = ∫ dt ( ∫ d3x ℒ) = (1/c) ∫ d4x ℒ

ℒ

ℒ

ℒ = 1
2 (∂μϕ)2 − 1

2 m2ϕ2 = 1
2 ∂0ϕ2 − 1

2 (∇ϕ)2 − 1
2 m2ϕ2

ℒ S[ϕ] dt
d3x d4x

δS[ϕ]
δϕ(x)

= 0

R ϕ
ϕ(x) → ϕ(x) + ϵr(x) r(x) SR R

∫R
d4x

δS[ϕ]
δϕ(x)

r(x) ≡ lim
ϵ→0

1
ϵ {S[ϕ + ϵr] − S[ϕ]}



Foundations	of	QFT,	ANU	Summer	School,	2023

Rela>vis>c	classical	scalar	field	theories	
(See	Chapter	3,	Sec	3.1)

3

So Hamilton’s principle leads to the result that 

 

 

 

 

  

 , 

 where in the above we have used the fact that the surface contribution vanishes and we have used 
the Minkowski-space form of the divergence theorem 

 . 

Here  is a four-vector infinitesimal surface element normal to the surface  of the spacetime region  
and pointing out of the region for spacelike surfaces and into the region for timelike surfaces. 

0 = ∫R
d4x

δS[ϕ]
δϕ(x)

r(x) = lim
ϵ→0

1
ϵ {S[ϕ + ϵr] − S[ϕ]}

=
1
c ∫R

d4x lim
ϵ→0

1
ϵ {ℒ(ϕ + ϵr, ∂μϕ + ϵ∂μr, x) − ℒ(ϕ, ∂μϕ, x)}

=
1
c ∫R

d4x { ∂ℒ
∂ϕ(x)

r(x) +
∂ℒ

∂(∂μϕ)(x)
∂μr(x)}

=
1
c ∫R

d4x { ∂ℒ
∂ϕ(x)

r(x) − (∂μ
∂ℒ

∂(∂μϕ)(x) ) r(x) + ∂μ ( ∂ℒ
∂(∂μϕ)(x)

r(x))}
=

1
c ∫R

d4x { ∂ℒ
∂ϕ(x)

− (∂μ
∂ℒ

∂(∂μϕ)(x) )} r(x) + ∫SR
( ∂ℒ

∂(∂μϕ)(x) ) r(x)dsμ

=
1
c ∫R

d4x { ∂ℒ
∂ϕ(x)

− (∂μ
∂ℒ

∂(∂μϕ)(x) )} r(x)

∫
R

∂μFμ d4x = ∫
SR

Fμdsμ

dsμ SR R
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Since  and the space-time region  are arbitrary then we have arrived at the Euler-Lagrange 
equations for the scalar field . Generalizing to  scalar fields  gives 

  , 

. 

Hamiltonian formulation: By analogy with classical mechanics, for every  we define the 
corresponding conjugate momentum  as 

 . 

Provided that the Hessian `matrix’  is positive definite, 

then we can perform a Legendre transform to replace  with  and define the Hamiltonian as 
 , 

where  is called the Hamiltonian density. 
It is not difficult to show that Hamilton’s equations take the form 

 , 

where  acts only on the explicit -dependence in . 
Poisson bracket in classical field theory: Recall that the Poisson bracket always involves quantities at 
equal times. Their field theory form replaces partial derivatives with functional derivatives and so 

 .

r(x) R
ϕ(x) N ⃗ϕ (x) = (ϕ1(x), …, ϕN(x))

S[ ⃗ϕ ] ≡ (1/c) ∫
R

d4x ℒ( ⃗ϕ , ∂μ
⃗ϕ )

0 = c
δS[ ⃗ϕ ]
δϕj(x)

=
∂ℒ

∂ϕj(x)
− ∂μ ( ∂ℒ

∂(∂μϕj)(x) ) for j = 1,2,…, N

ϕ(ct, x) = ϕ(x)
π(ct, x) = π(x)

π(x) ≡ c
δL

δ ·ϕ(x)
=

δL
δ(∂0ϕ)(x)

=
∂ℒ

∂(∂0ϕ)(x)
ML(x, y) |x0=y0 = δ2ℒ/δ(∂0ϕ(x))δ(∂0ϕ(y)) |x0=y0

∂0ϕ(x) π(x)
H ≡ [ ∫d3x π(x)∂0ϕ(x)] − L = ∫d3x [π(x)∂0ϕ(x) − ℒ] ≡ ∫d3x ℋ(ϕ, ∇ϕ, π, x)

ℋ(ϕ, ∇ϕ, π, x)

∂0ϕ =
∂ℋ
∂π

, ∂0π = −
∂ℋ
∂ϕ

+ ∇ ⋅
∂ℋ

∂(∇ϕ)
and ∂ex

μ ℋ = − ∂ex
μ ℒ

∂ex
μ x ℒ(ϕ(x), ∂μϕ(x), x)

{F, G} ≡ ∫ d3z ( δF

δ ⃗ϕ (x0, z)
⋅

δG
δ ⃗π(x0, z)

−
δF

δ ⃗π(x0, z)
⋅

δG

δ ⃗ϕ (x0, z) )
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Frequent use is made of the functional derivative results 

 . 

Similar to the discrete mechanics case we find 
 . 

Self-interacting scalar field: Adding a self interaction  leads to 

 

and the Euler-Lagrange equations 

 . 

We can write the Hamiltonian as 
 , 

where  . 

Free scalar field: For a free scalar field  and the Euler-Lagrange equations are 
 .    - Klein-Gordon equation for classical field. 

δϕi(x0, x)
δϕj(x0, y)

= δijδ3(x − y) and
δ ∇ϕi(x0, x)
δϕj(x0, y)

= δij ∇xδ3(x − y)

∂0F = {F, H} + ∂ex
0 F

U(ϕ)

ℒ = 1
2 (∂μϕ)

2
− 1

2 m2ϕ2 − U(ϕ) = 1
2 ∂0ϕ2 − 1

2 (∇ϕ)2 − 1
2 m2ϕ2 − U(ϕ)

(∂μ∂μ + m2) ϕ(x) + ∂U(ϕ)/∂ϕ(x) = 0

H= ∫d3x ℋ = ∫d3x [ 1
2 π(x)2+ 1

2 (∇ϕ(x))2+ 1
2 m2ϕ(x)2 + U(ϕ)] ≡ T[π]+V[ϕ]

V[ϕ] ≡ ∫ d3x [ 1
2 (∇ϕ(x))2 + 1

2 m2ϕ(x)2 + U(ϕ)]
U(ϕ) = 0

( □ + m2)ϕ(x) = (∂μ∂μ + m2)ϕ(x) = 0
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Noether currents: Consider an infinitesimal transformation of both the coordinates and fields 
, such that 

       and 
 , 

which defines  and . If the action is form invariant, , under such a transformation 
then we have a symmetry of the theory. This symmetry leads to a conserved four-vector current called a 
conserved Noether current (named after Emmy Noether), 

 . 

In this current we have made the definition 
 ,       

where recall that the conjugate momentum is  . For details see Sec. 3.2. We can always 
redefine a current by multiplying by a constant  and by adding the four-divergence of an antisymmetric 
tensor , since if  then for any  we have  . 

Conserved charge: For each conserved current  there is a 
conserved charge, ,which is the spatial integral of the charge density , 

 . 
Consider some three-dimensional region  bounded by the two-dimensional surface . If the total 
current density passing  through the surface vanishes, we then find 

 

where we have used the three-dimensional form of the divergence theorem to perform the last step.

⃗ϕ (x) = (ϕ1(x), …, ϕN(x))
xμ → x′ μ ≡ xμ + δxμ(x) ≡ xμ + dαXμ(x)
ϕi(x) → ϕ′ i(x′ ) ≡ ϕi(x) + δϕi(x) ≡ ϕi(x) + dαΦi(x)

Xμ(x) Φi(x) S[ϕ′ ] = S[ϕ]

jμ(x) ≡ ⃗πμ(x) ⋅ [ ⃗Φ(x) − [∂ν
⃗ϕ (x)]Xν(x)] + ℒ( ⃗ϕ , ∂μ

⃗ϕ , x)Xμ(x) , where ∂μ jμ(x) = 0

⃗πμ(x) ≡ ∂ℒ/∂(∂μ
⃗ϕ )(x)

π(x) ≡ π0(x)
a

Aμν = − Aνμ ∂μ jμ = 0 j′ 
μ ≡ ajμ + ∂νAνμ ∂μ j′ 

μ = 0

jμ(x) ≡ (j0(x), j(x)) ≡ (cρ(x), j(x))
Q ρ(x)

Q ≡ ∫d3x ρ(x) = (1/c) ∫d3x j0(x)
R SR

dQ /dt = ∫
R

d3x ∂0 j0(x) = ∫
R

d3x ∇ ⋅ ⃗j(x) = ∫
SR

d ⃗s ⋅ ⃗j(x) = 0
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Example: Consider the case of a complex scalar field , where  
and with the Lagrangian density 

 . 

This  is invariant under the global phase transformation  and 
. So the action  is invariant and this is a symmetry of the theory. Let 

 be infinitesimal and work to . Note that there is no transformation of  and so , 
whereas we recognize that  and . The conserved Noether current is then 

 , 

since  and . A complex scalar field is then a charged scalar field in the 
sense that is has a conserved charge . We will later couple it to an electromagnetic field 

 with minimal coupling, which leads to a  gauge theory where  is  the electric charge. 

ϕ(x) = [ϕ1(x) + iϕ2(x)]/ 2 ϕ1, ϕ2 ∈ ℝ

ℒ = |∂μϕ |2 − m2 |ϕ |2 = (∂μϕ)*(∂μϕ) − m2ϕ*ϕ = 1
2 [(∂μϕ1)2 + (∂μϕ2)2 − m2(ϕ1)2 − m2(ϕ2)2]

ℒ ϕ(x) → ϕ′ (x) = eiαϕ(x)
ϕ*(x) → ϕ*′ (x) = e−iαϕ(x) S[ϕ, ϕ*]
dα 𝒪(dα) xμ Xμ(x) = 0

Φ(x) = iϕ(x) Φ*(x) = − iϕ*(x)
jμ ≡ ⃗πμ ⋅ [ ⃗Φ − [∂ν

⃗ϕ ]Xν] + ℒXμ → πμ(x)Φ(x) + π*(x)Φ*(x) = i [ϕ(∂μϕ*) − ϕ*(∂μϕ)]
πμ(x) = ∂μϕ*(x) πμ* (x) = ∂μϕ(x)

Q = ∫ d3x ρ(x)
Aμ U(1) Q
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Translationally invariant systems: If  has no explicit spacetime dependence 
 then the action  is form invariant under spacetime translations, i.e., 

then  for some constants  is a symmetry of  the system. Under an 
infinitesimal translation  and so there will be four conserved currents and so  and 

. We have  and so . There is no 
transformation of the fields and so . The four conserved currents are then given by 

, where we are free to insert a conventional negative sign into the current 

 . 

We refer to  as the stress-energy tensor. Typically  will not be symmetric. 

With four conserved currents there will be four conserved charges, which we can define as 
 , 

 . 
The four conserved charges are the total four-momentum of the fields , where 

 is the classical Hamiltonian for the scalar fields. 
The energy density for the system is 

  
and the physical three-momentum density is given by 

 .

ℒ
ℒ( ⃗ϕ , ∂μ

⃗ϕ , x) → ℒ( ⃗ϕ , ∂μ
⃗ϕ ) S[ ⃗ϕ ]

xμ → x′ 
μ = xμ + aμ aμ ∈ ℝ

dα → daν Xμ → Xμ
ν

Φ → Φν xμ → xμ + daμ = xμ + daνδμ
ν ≡ xμ + daνXμ

ν Xμ
ν = δμ

ν
Φν(x) = 0

( jμ)ν ≡ Tμ
ν

Tμ
ν ≡ ( jμ)ν = − ⃗πμ ⋅ [ ⃗Φν − [∂ρ

⃗ϕ ]Xρ
ν(x)] − ℒXμ

ν = ⃗πμ ⋅ ∂ν
⃗ϕ − δμ

νℒ with ∂μTμν(x) = 0
Tμν Tμν

P0 = P0 = (1/c) ∫d3x T0
0 = ∫d3x (ℋ/c) = (H/c)

Pi = − Pi = −(1/c) ∫d3x T0
i = − (1/c) ∫d3x ⃗π ⋅ ∂i

⃗ϕ
Pμ = (P0, P) = (H/c, P)

H

u ≡ T00 = ℋ

pi
den = T0i /c = ⃗π ⋅ ∂i ⃗ϕ /c = − T0

i /c = − ⃗π ⋅ ∂i
⃗ϕ /c
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Poincaré invariant scalar field systems: If  is a Lorentz scalar, as it must be in a Lorentz covariant 
system, then  is by construction form invariant under Lorentz transformations. We assume that 

 are scalar fields and so have no intrinsic spin ( ).  For an inifinitessimal Lorentz 
transformation  with . There are six independent ’s and so 
there will be six independent Noether currents. We can write 

 ,  where we have defined  . 

Since the scalar fields do not change then . The six independent Noether currents are then  

 , 

where              and         . 
The six independent conserved charges are 

 . 
This is the classical field theory analog of the relativistic particle result that  from 
Lecture 1, where we identified  for a spinless particle. So the 

three conserved charges associated with the angular momentum of spinless fields, , are 
 . 

The other three conserved charges are  and are referred to as the dynamic mass moment of 
the fields and can be written as , where  is the total mass of the fields (total 
energy when ),  is  the center-of-mass (c.o.m) of the fields,  and  is the total 
three-momentum. Since  then . So  . So the 
total system behaves as a relativistic particle with internal structure and total “spin”  .

ℒ
S[ ⃗ϕ ]

⃗ϕ = (ϕ1, …, ϕN) s = 0
xμ → x′ μ = xμ + dωμνxν dωμν = − dωνμ ω

xμ → x′ μ = xμ + dωμνxν ≡ xμ+ 1
2 dωρσXμ

ρσ Xμ
ρσ ≡ (δμ

ρxσ − δμ
σxρ)

Φρσ = 0
𝒥μ

ρσ(x) = (− ⃗πμ ⋅ ∂ν
⃗ϕ + δμ

νℒ) Xν
ρσ = − Tμ

νXν
ρσ = xρTμ

σ − xσT
μ
ρ

𝒥μ
ρσ = − 𝒥μ

σρ ∂μ𝒥μ
ρσ = 0

Mρσ = (1/c)∫d3x 𝒥0ρσ = (1/c)∫d3x (xρT0σ−xσT0ρ) = ∫d3x (xρpσ
dens−xσpρ

dens)
Mμν = xμPν − xνPμ

Ji = Li = (x × P)i = ϵijkxjPk = 1
2 ϵijkMjk

J = L
Ji = 1

2 ϵijkMjk = ∫d3x 1
2 ϵijk [xj(T0k /c) − xk(T0j /c)] = ∫d3x (x × pden)i ≡ Li

Ki = M0i /c
K = c [tP − γ(V )MXcom] M

P = 0 Xcom V ≡ P/γ(V)M P
dP/dt = 0 dV/dt = 0 dK /dt = 0 ⟹ V = dXcom/dt

S = JP=0 = LP=0
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Poincaré invariant systems with intrinsic spin: Consider a set of fields that transform not as a set of 
scalars but in a nontrivial way under Lorentz transformations such that 

    or in component form    
, 

where where , where summation over repeated indices is to be understood, and  
where  belongs to an  matrix representation of the Lorentz group. We can define 

       with         . 

     with     

 

We also have for a Lorentz transformation as before  . So 
then the six independent conserved Noether currents have the form 

 
where  and where we have defined  . The six corresponding conserved charges are 

 , 
We define the orbital ( ) and intrinsic ( ) angular momentum components of  respectively as 

 , 
 . 

We can similarly decompose the total angular momentum  carried by the classical 
fields into total orbital ( ) and total intrinsic angular momentum ( ) components as 

 , where      and    .

⃗ϕ (x) → ⃗ϕ ′ (x′ ) = S ⃗ϕ (x) with x′ = Λx
ϕr(x) → ϕ′ r(x′ ) = Srsϕs(x) with x′ μ = Λμ

νxν

r, s = 1,…, N
S ≡ S[Λ] N × N

Srs ≡ δrs+
1
2 dωρσ(Σrs)ρσ (Σrs)ρσ = − (Σrs)σρ

ϕ′ r(x′ )=Srsϕs(x)=ϕr(x)+ 1
2 dωρσ(Σrs)ρσϕs(x)≡ϕr(x)+ 1

2 dωρσΦrρσ(x)
Φrρσ(x) ≡ (Σrs)ρσϕs(x)

xμ → x′ μ = xμ + dωμνxν ≡ xμ+ 1
2 dωρσXμ

ρσ

𝒥μ
ρσ =(−πμ

r ∂νϕr+δμ
νℒ)Xν

ρσ+πμ
r Φrρσ =(xρTμ

σ − xσTμ
ρ)+πμ

r (Σrs)ρσϕs ≡ (xρTμ
σ−xσTμ

ρ)+Rμ
ρσ

∂μ𝒥μ
ρσ = 0 Rμ

ρσ
Mρσ = (1/c) ∫d3x 𝒥0ρσ = (1/c) ∫d3x [(xρT0σ − xσT0ρ) + πr(Σrs)ρσϕs] ≡ Lρσ + Sρσ

Lρσ Sρσ Mρσ

Lρσ ≡ (1/c) ∫d3x (xρT0σ − xσT0ρ) = ∫d3x (xρpσ
dens − xσpρ

dens)
Σρσ ≡ ∫d3x (πr(Σrs)ρσϕs /c)

(J)
L S

J = L + S Ji ≡ 1
2 ϵijkMjk , Si ≡ 1

2 ϵijkΣ jk Li ≡ 1
2 ϵijkL jk = ∫ d3x (x × pden)i
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Internal symmetries of the fields: Consider a symmetry where the action is invariant under 
transformation of the field components between themselves at the same spacetime point, i.e.,  

 . 
We refer to this as an internal symmetry. Note that since  then . 
We will typically be interested in situations where the matrix  is any arbitrary element of an  matrix 
representation of some group, e.g, the  representation of the group . We then say that the 
action is invariant under this group of internal transformations. For an infinitesimal transformation  we 
define  using 

 , 
which leads to the definition of , 

 . 

The conserved Noether current is then 
      where        . 

The conserved charge associated with this internal symmetry is 
 , 

where recall that  .

ϕr(x) → ϕ′ r(x) = Rrsϕs(x)
xμ → x′ 

μ = xμ Xμ(x) = 0
R N × N

N × N SU(N )
R

λrs
Rrs ≡ δrs + dαλrs

Φr(x)
ϕ′ r(x) = ϕr(x) + dαλrsϕs(x) ≡ ϕr(x) + dαΦr(x)

jμ(x) = ⃗πμ(x) ⋅ ⃗Φ(x) = πμ
r (x)λrsϕs(x) ∂μ jμ(x) = 0

Q = ∫d3x ρ(x) = ∫d3x j0(x)/c = ∫d3x (πr(x)λrsϕs(x)/c)
πr ≡ π0

r
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Making a symmetric stress-energy tensor: As noted earlier the “canonical” stress-energy tensor  
that we have defined is not in general symmetric. However, we can use freedoms to redefine conserved 
currents so that the so-called Belinfante-Rosenfeld tensor  is a symmetric form of . It is  that 
induces the curvature of spacetime in general relativity. 

In a Poincaré invariant system we have from translational invariance that  and from Lorentz 
invariance that . Then we find 

 . 
Recall that Recall that  and so . The antisymmetric part of the stress-

energy tensor is  and so  is only nonsymmetric when the classical field 

has intrinsic angular momentum, . If we define 
          and          

then it can be shown that (see Sec. 3.2.6) 
         and            

as required. Since  we see that we have modified  by the allowed addition of the four-
divergence of an antisymmetric tensor to give . It is readily shown that  

Similarly defining  we find that   where 

since  we have  and  . 

Tμν

Tμν Tμν Tμν

∂μTμν = 0
∂μ𝒥μ

ρσ = 0
0 = ∂μ𝒥μ

ρσ = ∂μ((xρTμ
σ − xσT

μ
ρ) + πμ

r (Σrs)ρσϕs) = gμρTμ
σ − gμσT

μ
ρ + ∂μRμ

ρσ
(Σrs)ρσ = − (Σrs)σρ Rμρσ = − Rμσρ

1
2 (Tρσ− Tσρ) = − 1

2 ∂μRμρσ Tμν

Σrs ≠ 0
Kμρσ ≡ 1

2 (Rμρσ + Rρσμ + Rσρμ) T̄μν = Tμν + ∂ρKρμν

∂μT̄μν = 0 T̄μν = T̄νμ

Kρμν = − Kμρν Tμν

Tμν P̄μ = (1/c) ∫d3x T̄0ν = Pμ .

𝒥μ
ρσ ≡ (xρT̄μ

σ − xσT̄
μ

ρ) 𝒥μρσ = 𝒥μρσ + ∂λ (xρKλμσ − xσKλμρ)
Kρμσ = − Kμρσ ∂μ𝒥μ

ρσ = ∂μ𝒥μ
ρσ = 0 M̄ρσ = (1/c) ∫d3x �̄�0ρσ = Mρσ
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In classical mechanics a conserved charge  generates a canonical transformation that leaves the 
system invariant. So it is also true in classical field theory that a conserved charge  satisfies 

 
and generates a canonical transformation on the fields (the “coordinates”)  and their conjugate 
momenta  that is the corresponding infinitesimal symmetry transformation, 

 . 
We expect that the conserved charges  and  are the generators of the translations and the Lorentz 
transformations respectively. This can be explicitly confirmed since we can show that 

        and         , 
which correspond exactly to the translations and Lorentz transformations respectively [See Eqs. (3.2.51) 
and (3.2.92)]. With some effort it can be shown that these generators  and  satisfy the Lie algebra 
of the Poincaré group where the role of the Lie bracket is played by the the Poisson bracket  
rather that the commutator , 

 , 
 . 

Now we can appreciate the beauty of Dirac’s canonical quantization approach, which results in the 
replacement of the Poisson bracket (or Dirac bracket for singular systems) with the commutator in the 
quantized version of the theory. This automatically preserves all of the dynamics of the classical theory 
into the quantum theory, i.e., all Poisson (or Dirac) brackets are replaced by commutators and the 
quantum operators obey the same equations of motion as their classical counterparts.  
The exception to this rule occurs when we have to renormalize the quantum theory and when every 
possible regularization of the theory violates some classical relation. Such an unavoidable violation is 
called a quantum anomaly.

Q
Q

dQ /dt = {H, Q} = 0
ϕi

πi = π0
i

dϕi(x) = dα{ϕi(x), Q} = dα δQ /δπi(x) , dπi(x) = dα{πi(x), Q} = − dα δQ /δϕi(x)
Pμ Mμν

{ ⃗ϕ (x), Pμ} = ∂μ ⃗ϕ (x) { ⃗ϕ (x), Mμν} = ⃗Ψμν(x) = Σρσ
⃗ϕ (x) + xρ∂σ

⃗ϕ (x) − xσ∂ρ
⃗ϕ (x)

Pμ Mμν

{⋯, ⋯}
[⋯, ⋯]

i{Pμ, Pν} = 0 , i{Pμ, Mρσ} = i(gμρPσ − gμσPρ)
i{Mμν, Mρσ} = i (gνρMμσ − gμρMνσ − gνσMμρ + gμσMνρ)
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A detailed review of Maxwell’s equations and the covariant formulation of electromagnetism and the 
associated need for gauge fixing of the four-vector field  is given in Chapter 2, Sec. 2.7. We summarize 
here the formulation of electromagnetism as a relativistic classical field theory. In Sec. 2.7.1 we showed 
that Maxwell’s equations can be succinctly written as  

    and     , 

where where ,   ,  ,  ,  

 and in Lorentz-Heaviside units   . The result that 
 follows automatically from these definitions alone. All of the dynamics is contained in the 

equation of motion . There are very many  corresponding to the same  and  fields, 
which means that we need to “gauge-fix” the  to reduce the unphysical degrees of freedom. Common 
choices are: (i) Coulomb gauge where ; and (ii) Lorenz gauge where  . 

Consider the action  

Applying Hamilton's principle to this action gives the Euler-Lagrange equations 

 , 

and so we recover Maxwell’s equations. In the absence of an external current we have 
 , 

which is Poincaré invariant. The canonical stress-energy tensor is 

 ,     where       . 

Aμ

∂μF̃μν = 0 ∂μFμν = (1/c)jν

Fμν = ∂μAν − ∂νAμ F̃μν ≡ 1
2 ϵμνρσFρσ B = ∇ × A E = − ∇Φ − (∂A/∂t)

jμ = ( j0, j) = (ρ/c, j) Aμ = (A0, A) ≡ (Φ, A)
∂μF̃μν = 0

∂μFμν = (1/c)jν Aμ E B
Aμ

∇ ⋅ A = 0 ∂μAμ = 0

S[A] = ∫dt L = (1/c) ∫d4x ℒ = (1/c) ∫d4x [− 1
4 FμνFμν − (1/c)jμAμ]

0 = c
δS[A]
δAν(x)

=
∂ℒ

∂Aν(x)
− ∂μ ( ∂ℒ

∂(∂μAν)(x) ) = − (1/c)jν(x) + ∂μFμν(x)

ℒ = − 1
4 FμνFμν

Tμ
ν(x) =

∂ℒ
∂(∂μAτ)

∂νAτ − δμ
νℒ = − Fμτ∂νAτ+

1
4 δμ

νFστFστ ∂μTμν = 0
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Since  is antisymmetric under the interchange of  and  we can define a modified conserved 
stress-energy tensor by choosing ,  

  , 

which satisfies  and .  is the Belinfante-Rosenfeld stress-energy tensor for the 
electromagnetic field. We find that 

 , 

 . 

Similarly, for the improved angular momentum tensor  we have 

 and ,  
which leads to the result 

 . 

Hamiltonian formulation of electromagnetism: This is too complex to discuss here because 
electromagnetism is a singular system, since  and so the Hessian has zero 
eigenvalues. We need to use the DIrac-Bergmann algorithm to introduce constraints. This leads to the 
Dirac brackets that show how to canonically quantize the system. For a full discussion see Chapter 3, 
Sec. 3.3.2. This results in two constraints and so the four degrees of freedom in  reduce to the two 
physical degrees freedom of the electromagnetic field. It is easiest to formulate the Hamiltonian approach 
in Coulomb gauge, which is what is done in Sec. 3.3.2. We generalize to other gauge choices later in 
these lectures (for details of this see Chapter 6, Sec 6.4.4). 

(FμτAν) μ τ
Kμτν = FμτAν

T̄μ
ν ≡ Tμ

ν + ∂τ (FμτAν) = Tμ
ν + Fμτ∂τAν = − FμτFντ+

1
4 δμ

νFστFστ
T̄μν = T̄νμ ∂μTμν = 0 Tμν

P0 = E/c = (1/c) ∫d3x u = (1/c) ∫d3x T̄00 = (1/c) ∫d3x 1
2 (E2 + B2)

Pi = ∫d3x pi
dens = (1/c) ∫d3x T̄0i = ∫d3x Si /c2 = (1/c) ∫d3x (E × B)i

𝒥μ
ρσ ≡ (xρT̄μ

σ − xσT̄
μ

ρ)
∂μ𝒥μ

ρσ = ∂μ𝒥μ
ρσ = 0 M̄ρσ = (1/c) ∫d3x �̄�0ρσ = Mρσ

Ji = 1
2 ϵijkMjk = ∫ d3x (x × pdens)i = (1/c) ∫d3x [x × (E × B)]i

π0(x) = ∂ℒ/∂(∂0A0)(x) = 0

Aμ
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Klein-Gordon equation: Let   be a plane wave wavefunction, then we would expect that it is a 
simultaneous  eigenstate of energy and three-momentum so that 

        and 
 . 

In order to describe the motion of a relativistic particle we expect that  
and so we require 

 , 

which we recognize is just the Klein-Gordon equation (KGE) of relativistic classical field theory with 
appropriate factors of  and  to ensure that  has the physical dimension of mass. So we have 

 . 

We know that this KGE can be obtained as the equation of motion for a Lagrangian density 
 . 

Note that since we have  then both positive and negative energy solutions are 
possible. Negative energy  antiparticles. We always find (QM + special relativity)  antiparticles. 

The quantum mechanical wavefuction is complex and so it is natural to consider a complex scalar field 
. This has the Lagrangian density  , with KGE as the equation of 

motion, , and with the conserved current  . Since 
the density  is not positive definite it cannot be interpreted as a probability density as we might expect 
from QM, rather we need to think of it as a wave. In the nonrelativistic limit we do recover the Schrödinger 
equation and the normal QM interpretation however, [see Eq. (4.2.21)]. 

ϕk(x)

Ĥϕk(x) = iℏ(∂/∂t)ϕk(x) = ℏωϕk(x) = Eϕk(x)
p̂ϕk(x) = − iℏ∇ϕk(x) = ℏkϕk(x) = pϕk(x)

p2 = pμpμ = (E/c)2 − p2 = m2c2

̂p2ϕk(x) = ̂pμ ̂pμϕk(x) = ((Ĥ2/c2) − p̂2) ϕk(x) = − ℏ2∂μ∂μϕk(x) = m2c2ϕk(x)

ℏ c m

[∂μ∂μ + (mc/ℏ)2] ϕ = [ □ + (mc/ℏ)2] ϕ = 0

ℒ = 1
2 (∂μϕ∂μϕ − (m /ℏc)2ϕ2)

(Ĥ2/c2) − p̂2)ϕk(x)
⟹ ⟹

ϕ(x) ℒ = ∂μϕ∂μϕ * − (m /ℏc)2ϕϕ*
[∂μ∂μ − (m /ℏc)2]ϕ = 0 jμ = iq[ϕ*∂μϕ − (∂μϕ)*ϕ]

ρ
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Spinless charged particle interacting with e.m. field: As seen earlier the minimal coupling to the e.m. 
field (including factors of  and  to get dimensions correct) is given by  . The 
Lagrangian density then becomes , with the modified KGE 

 and the conserved current  . In the 
nonrelativistic limit we recover the usual QM Schrödinger equation for a (spinless) particle interacting with 
an e.m. field, i.e., , [see Eq. (4.3.71)]. 

Dirac equation: Historically the fact that the  of the KGE was not positive definite and the existence of 
negative energy solutions drove Dirac to seek alternative forms of RQM. It was the occurrence of 

 in the KGE that led to the latter, so he sought an equation linear in . He 
proposed the simple form known as the Dirac equation, 

 . 

To satisfy  requires 
  

and so It then follows that  and  must obey the anticommutation relations of a Clifford algebra, 
 , 

where the anticommutator is  (not to be confused with the Poisson bracket!). we also 
have  and .  
So  and  must be matrices and the lowest possible dimensional representation is as  matrices. 

ℏ c ∂μ → Dμ ≡ ∂μ + i(q/ℏc)Aμ
ℒ = DμϕDμϕ * − (m /ℏc)2ϕϕ*

[DμDμ − (m /ℏc)2]ϕ = 0 jμ = iq [ϕ*Dμϕ − ϕ(Dμϕ)*]
Ĥnonrel = (p̂2/2m) + qΦ

ρ

Ĥ2 = − ℏ2∂2/∂t2 Ĥ = iℏ∂/∂t

iℏ
∂ψ
∂t

= Ĥψ = [−iℏc α ⋅ ∇ + βmc2] ψ

E2 = p2c2 + m2c4

−ℏ2∂2ψ /∂t2 = Ĥ2ψ = [p̂2c2+m2c4]ψ = [−ℏ2c2∇2+m2c4]ψ = 0
α β

{αi, αj} = 2δijI , {αi, β} = 0 , β2 = I for i, j = 1,2,3
{A, B} ≡ AB + BA

trαi = − tr(βαiβ) = − tr(β2αi) = − trαi = 0 trβ = − tr(αiβαi) = − tr(α2
i β) = − trβ = 0

α β 4 × 4
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The Dirac representation is      ,       and     , 

where the  are the usual Pauli spin matrices and  is called a Dirac spinor wavefunction. It is easily 
checked that the Dirac equation leads to the conserved current 

      where       . 
Note that  is positive definite here,  . 

Lorentz covariance and the Dirac equation: We should express the Dirac equation in terms of  
and . In order to achieve this we define   and  

which gives the Dirac representation of the -matrices      and     . 

The Dirac equation then takes the covariant-looking form   
 , 

where we have introduced the Feynman “slash” notation . In order for this equation to 
be Lorentz covariant  we require a $4\times 4$ matrix representation  of 
the the restricted Lorentz transformations   such that  

       and         . 
With this we find that the Dirac equation actually becomes covariant as required, 

 .  [See Eqs. (4.4.63)-(4.4.65)]

αi = (0 σi

σi 0) β = (I 0
0 −I) ψ(x) =

ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

σi ψ(x)

jμ = ( j0, j) = (cρ, j) ≡ (ψ†ψ, cψ†αψ) ∂μ jμ = 0
ρ ρ = ψ†ψ > 0

xμ = (ct, x) ∂μ = (∂/c∂t, ∇) γ0 ≡ β γi ≡ γ0αi = βαi

γ γ0 = (I 0
0 −I) γi = ( 0 σi

−σi 0)
(iℏγμ∂μ − mc)ψ(x) = (iℏ/∂ − mc)ψ(x) = 0

/A ≡ γμAμ = γμAμ

S(Λ)
Λμ

ν
S(Λ)−1γμS(Λ) = Λμ

νγν ψ(x) ⟶ ψ′ (x′ ) = ψ′ (Λx) = S(Λ)ψ(x)

0 = (iℏγμ∂′ μ − mc)ψ′ (x′ ) = (iℏγμ∂μ − mc)ψ(x)
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The form of  can be derived [see Eqs. (4.4.67)-(4.4.75)] and is given by 

 

where we have defined   and  . 

The relation to the  discussed earlier in relativistic classical field theory is . 

We define the Dirac adjoint spinor as       . It follows that for a restricted Lorentz 
transformation  since 

 . 
It then follows for example that  is a Lorentz scalar and  is a Lorentz four-vector. 

The plane wave solutions to the Dirac equation are  for particle 
solutions and  for antiparticle solutions, where we have 

 

Note the  and  correspond to  particles and antiparticles respectively and where  

and  are two component spinors defined such that  ,  .

S(Λ)
S(Λ) = exp (− i

2 ωρσΣρσ
Dirac/ℏ) = exp (− i

4 ωρσσρσ)
σρσ ≡ (i/2)[γρ, γσ] Σρσ

Dirac ≡ 1
2 ℏσρσ

Σμν Σρσ
Dirac ≡ iΣρσ

ψ̄(x) ≡ ψ(x)†γ0

ψ̄(x) → ψ̄(x)S(Λ)−1

ψ̄(x)→ ψ̄′ (x′ )=ψ′ (x)†γ0 =ψ(x)†S(Λ)†γ0 = ψ̄γ0S(Λ)†γ0 = ψ̄(x)S(Λ)−1

ψ̄(x)ψ(x) ψ̄(x)γμψ(x)

ψ(x) = e−ip⋅x/ℏus(p) = e−ip⋅x/ℏS(Λ)us(0)
ψ(x) = e+ip⋅x/ℏvs(p) = e+ip⋅x/ℏS(Λ)vs(0)

us(p) = S(Λ)us(0) =
/p + mc

(p0 + mc) (ϕs

0) , us(0) = 2mc (ϕs

0) ,

vs(p) = S(Λ)vs(0) =
− /p + mc

(p0 + mc) ( 0
χ−s) , vs(0) = 2mc ( 0

χ−s) .

u±(p) v±(p) s = ± 1
2 ϕs

χs ϕ+ = χ+ = (1
0) ϕ− = χ− = (0

1)
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With  we have  and so 
 

So we have 
 , 

 
 . 

It then follows from the forms given for  and  that 
     and      . 

We verify that  and  are solutions of the Dirac equation, since 
    and 

 . 

Using the above results we can show for all  that 

     and       , 
     and      , 

      and      , 
 , 

 . 

pμ = (p0, p) = (γmc, γmv) p2 = m2c2

/p2 = /p /p = pμpνγμγν = 1
2 pμpν{γμ, γν} = pμpνgμν = p2 = m2c2

( /p − mc)( /p + mc) = ( /p + mc)( /p − mc) = /p2 − m2c2 = p2 − mc2 = 0
( /p + mc)2 = p2 + 2mc /p + m2c2 = 2mc( /p + mc)
(− /p + mc)2 = p2 − 2mc /p + m2c2 = 2mc(− /p + mc)

us(p) vs(p)
( /p − mc)us(p) = 0 ( /p + mc)vs(p) = 0

ψ(x) = e−ip⋅x/ℏus(p) ψ(x) = e+ip⋅x/ℏvs(p)
(iℏ /∂ − mc)e−ip⋅x/ℏus(p) = ( /p − mc)e−ip⋅x/ℏus(p) = 0
(iℏ /∂ − mc)e+ip⋅x/ℏvs(p) = − ( /p + mc)e+ip⋅x/ℏvs(p) = 0

s, s′ = ± 1
2

ūs(p)us′ (p) = 2mcδss′ v̄s(p)vs′ (p) = − 2mcδss′ 

v̄s(p)us′ (p) = ūs(p)vs′ (p) = 0 vs†(p)us′ (−p) = us†(p)vs′ (−p) = 0
ūs(p) /p = mc ūs(p) v̄s(p) /p = − mc v̄s(p)
us(p)†us′ (p) = vs(p)†vs′ (p) = (2E/c)δss′ 

pμ = 1
2 ūs(p)γμus(p) = 1

2 v̄s(p)γμvs(p)
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We can form fermion bilinear that transform under Lorentz transformations as: 

  

The Dirac -matrices satisfy a number of important identities, some of which are: 

 

For a full list of Dirac -matrix representations and identities, including trace and contraction identities, 
see the Appendix, Sec. A.3. 

scalar: ψ̄′ (x′ )ψ′ (x′ ) = ψ̄(x)ψ(x) ,
vector: ψ̄′ (x′ )γμψ′ (x′ ) = Λμ

νψ̄(x)γνψ(x) ,
second-rank tensor: ψ̄′ (x′ )σμνψ′ (x′ ) = Λμ

ρΛν
σψ̄(x)σρσψ(x) ,

pseudovector/axial vector: ψ̄′ (x′ )γμγ5ψ′ (x′ ) = det(Λ)Λμ
νψ̄(x)γνγ5ψ(x) ,

pseudoscalar: ψ̄′ (x′ )iγ5ψ′ (x′ ) = det(Λ)ψ̄(x)iγ5ψ(x) ,

γ

{γμ, γν} ≡ γμγν + γνγμ = 2gμν ⇒ (γ0)2 = − (γi)2 = I ,
γ0γi = − γiγ0 , γ0γiγ0 = − γi , γiγ0γi = γ0 ⇒ trγi = trγ0 = 0 ,

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3 = −i
4! ϵμνρσγμγνγργσ , σμν ≡ i

2 [γμ, γν] ,

{γμ, γ5} = 0 , (γ5)2 = I , γμγν = 1
2 {γμ, γν}+ 1

2 [γμ, γν] = gμν−iσμν,

/p /q = p ⋅ q − iσμν pμqν , [γ5, σμν] = 0 and γ5σμν = i
2 ϵμνρσσρσ .

γ


