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“This new and very welcome introduction 
to quantum field theory takes the reader 
from the basics of classical physics and the 
beauty of group theory to the intricacies and 
elegance of gauge field theories. Students 
and researchers alike will treasure this fresh 
approach to one of the foundation stones of 
modern physics.”
Professor Thomas Appelquist, Yale University

“I wish this text had been available the last 
time I taught quantum field theory. The author 
provides clear, detailed expositions, which 
serve students with diverse backgrounds for 
multiple course syllabi.”
Professor Steve Gottlieb, Indiana University

“The rigorous and logical approach makes 
this text certainly one to be seriously 
considered for use in a quantum field 
theory course. In any case, it is one which 
practitioners will definitely want to have 
within easy reach on their bookshelf.”
Professor Barry Holstein, University of 
Massachusetts Amherst

“Both as an introductory text and as an 
excellent single-volume compendium on 
quantum field theory, this book is highly 
recommended for students as well as 
practitioners at all levels.”
Professor Wolfram Weise, Technical 
University of Munich
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Classical Mechanics to Gauge Field Theories

ANTHONY G. WILLIAMS

INTRODUCTION TO

This textbook offers a detailed and uniquely self-
contained presentation of quantum and gauge 
field theories. Writing from a modern perspec-
tive, the author begins with a discussion of 
advanced dynamics and special relativity before 
guiding students steadily through the fundamen-
tal principles of relativistic quantum mechanics 
and classical field theory. This foundation is then 
used to develop the full theoretical framework of 
quantum and gauge field theories. The introduc-
tory, opening half of the book allows it to be 
used for a variety of courses, from advanced 
undergraduate to graduate level, and students 
lacking a formal background in more elementary 
topics will benefit greatly from this approach. 
Williams provides full derivations wherever 
possible and adopts a pedagogical tone with-
out sacrificing rigour. Worked examples are 
included throughout the text, and end-of-chapter 
problems help students to reinforce key concepts. 
A fully worked solutions manual is available 
online for instructors.

 For instructors:
 Solutions manual
 Figures in PPT and JPG format
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The primary source for these lectures is my QFT textbook: 
(i) Introduction to quantum Field Theory: Classical Mechanics to Gauge Field 
Theories, Anthony G. Williams (Cambridge University Press, 2022) 
Note: Any references to sections and/or equation numbers in these lectures refer to 
this textbook. 

Other recommended textbooks using similar notation and conventions: 
(ii) Introduction to Quantum Field Theory, Michael E. Peskin and Daniel V. Schroeder, 
(CRC Press, 2019) 
(iii) Quantum Field Theory and the Standard Model,  Matthew D. Schwartz, 
(Cambridge University Press, 2022) 

Other useful references include: Schweber (1961), Bjorken and Drell (1964 and 1965), 
Roman (1969), Nash (1978),  Itzykson and Zuber (1980), Cheng and Li (1984), Mandl 
and Shaw (1984), Ryder (1986), Brown  (1992), Bailin and Love (1993), Sterman 
(1993), Weinberg (1995 and 1996), Greiner and Reinhardt (1996), Pokorski (2000), 
Srednicki (2007), Zee (2010), Aitchison and  Hey (2013) and many others.
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Lecture 1: Lightening Review of 
Assumed Knowledge 

Elements of group theory, special relativity, 
classical mechanics, and quantum 

mechanics 

The following is far too much for one lecture!!! Review and refer back to this material as 
needed. This lecture establishes a common platform for students of varying 
backgrounds so that the remaining lectures can be built on it.
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Group	Theory	&	Lie	Groups:	Cheat	Sheet	
See Vanessa Robbins lectures for careful discussion and details and the Appendix, Sec. A.7 
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Definition of a group:  
A set of elements  forms a group, , when a binary group operation (or group 
multiplication), ,  has the properties: 

(i) Closure: If  then , i.e.,  for some . 
(ii) Associativity:  for all . 
(iii) Identity: There exists some  (or we will often write ) , called the identity, such that 

 for every . 
(iv) Inverse: For every  there exists some , called the inverse of , such that 

. 
Lie groups: 
A continuous group with  is a Lie group if it is infinitely differentiable with respect to its 
real parameters . So Lie groups are also real smooth manifolds. This is the definition of a real Lie group 
and includes, e.g.,  and . There are also complex Lie groups which are 
complex analytic in their complex group parameters . 
Important examples of complex Lie groups are  (invertible complex  matrices) and 

 (complex  matrices with unit determinant). 
Consider a real Lie group with elements . Sufficiently close to the identity we can define 

   ,  where we can define      

where the  are called the generators of the Lie group . 

{g1, g2, g3, ⋯} G
gigj ≡ gi ∘ gj
gi, gj ∈ G gigj ∈ G gigj = gk gk ∈ G

gi(gjgk) = (gigj)gk gi, gj, gk ∈ G
e I ∈ G

egi = gie = gi gi ∈ G
gi ∈ G g−1

i ∈ G gi
gig−1

i = g−1
i gi = e

gi → g( ⃗ω ) ∈ G
⃗ω
U(n), SU(n), O(n) SO+(1,3)

⃗ω
GL(n, ℂ) n × n

SL(n, ℂ) n × n
g( ⃗ω )

g( ⃗ω )= I+i ⃗ω ⋅ ⃗T +𝒪(ω2)= I+iωaTa+𝒪(ω2)
∂g

∂ωa
⃗ω=0⃗

≡ iTa

Ta G



Foundations	of	QFT,	ANU	Summer	School,	2023

Group	Theory	&	Lie	Groups:	Cheat	Sheet	

6

Provided  is sufficiently close to the identity then we can write 
. 

A real Lie group  will not be homeomorphic (a topology preserving mapping) to , i.e., the above 
equation cannot hold for all elements  of the Lie group. 
Consider the product of two group elements near the identity. Closure means that for some , 

 
by the Baker-Campbell-Hausdorff theorem and so it must be true that we can write 

      (defines the Lie algebra of the Lie Group) Note: We use summation convention! 
for some constants  .  We call the  the structure constants of the Lie algebra. For some Lie 
group  we write its Lie algebra using lower case gothic font as . Any element of the real Lie algebra  
for a real Lie group  is a real linear combination the group generators , i.e.,  for all  

The Lie algebra is the tangent space to the Lie Group at the identity. Different Lie Groups can have the 
same Lie algebra, e.g., the Lie groups  and  have the same Lie algebra, , 
defined by  with generators  and structure constants . It 
can be shown that  is a double cover of  in that every element of  has two 
corresponding elements of We often work in natural units where  so that  

The (quadratic) Casimir invariants of a Lie group  are quadratic combinations of the generators that 
commute with all elements of the Lie algebra , e.g., the only such Casimir invariant of  is , since 
it commutes with every linear combination of the  or equivalently since . Obviously any 
polynomial of  also commutes with all of  the generators. 
  

g( ⃗ω )
g( ⃗ω ) = lim

N→∞
g( ⃗ω /N )N = lim

N→∞
[I + i(1/N ) ⃗ω ⋅ ⃗T ]N = ei ⃗ω ⋅ ⃗T

G ℝn

g ∈ G
ϵ3 ⃗ω3

g(ϵ1ω̂1)g(ϵ2ω2) = exp{i(ϵ1ω̂1 + ϵ2ω̂2)⋅ ⃗T − 1
2 ϵ1ϵ2ωa

1ωb
2[Ta, Tb] + ⋯} = exp{iϵ3ω̂3⋅ ⃗T } = g(ϵ3ω̂3)

[Ta, Tb] = if abcTc

f abc ∈ ℝ f abc

G 𝔤 𝔤
G Ta caTa ∈ 𝔤 ca ∈ ℝ .

O(3) SU(2) 𝔰𝔲(2) = 𝔬(3)
[(Ji /ℏ), (Jj /ℏ)] = iϵijk(Jk /ℏ) (Ji /ℏ) f ijk = iϵijk

SU(2) SO(3) SO(3)
SU(2) . ℏ = c = 1 (Ji /ℏ) → Ji .

G
𝔤 SU(2) J2

Ji [J2, Ji] = 0
J2
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Representations of  group: A representation of a group  is a mapping , where  is the 
general linear group on the vector space , e.g., . Note that  is the set of  
invertible complex matrices. Different matrix realizations of the representation are related by changes of 
basis of , i.e., by similarity transformations. In a specific realization in terms of matrices there is a matrix 

 for every  and the group operation corresponds to matrix multiplication.  

If every  can be brought into block-diagonal form by some constant similarity transformation  then we 
have a completely reducible representation, i.e., if there is an  such that  has a block diagonal 
form 

 ,  
where each block  is also an irreducible representation of  

We can also have infinite dimensional representations of groups in terms of differential operators, such as 
the unitary representation of the translation group in quantum mechanics,  with the total three-
momentum  operator  in coordinate-space representation. 

If all of the group elements  commute with each other we say that the group is abelian, otherwise we say 
that it is a nonabelian group. All structure constants of an abelian Lie group must therefore vanish, since the 
Lie group elements  only commute if all of the generators  do. 

G G → GL(V ) GL(V )
V V = ℂn GL(ℂn) ≡ GL(n, ℂ) n × n

V
D(g) g ∈ G

D(g) S
S SD(g)S−1

SD(g)S−1 = diag[D1(g), D2(g), D3(g), ⋯]
Dj(g) G .

exp(−ia ⋅ P)
P = − iℏ∇

g

g Ta
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Lorentz	and	Poincaré	Invariance	
(See	Chapter	1,	Sec	1.2)
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The postulates of special relativity are: 
(i) the laws of physics are the same in all inertial frames; and 
(ii) the speed of light is constant and is the same in all inertial frames. 

Let  and  be any two spacetime events labeled by inertial observer  as  and 
 respectively. The spacetime displacement of these two events in the frame of  is 

 
The Minkowski-space metric tensor, , is defined by 

 
which we can also write as . We can then further define  

 
where we use the Einstein summation convention that repeated spacetime indices are 
understood to be summed over. In general relativity . 

The postulates immediately lead to the result that changing from one inertial frame to another implies 
 

where  or more briefly  is a Lorentz transformation consisting of 16 real constants and where 
invariance of the speed of light gives the result that  

 
The set of all such  form a group called the Lorentz group, which is denoted as  in analogy with 
the rotation group of 3 3 matrices  that satisfy  or equivalently 

E1 E2 𝒪 xμ
1 = (ct1, x1)

xμ
2 = (ct2, x2) 𝒪
zμ ≡ Δxμ = (xμ

2 − xμ
1 ) = (c(t2 − t1), x2 − x1) = (cΔt, Δx) .

gμν
g00 = − g11 = − g22 = − g33 = + 1 and gμν = 0 for μ ≠ ν ,

gμν ≡ diag(1, − 1, − 1, − 1)
x2 ≡ xμgμνxν = (x0)2 − x2 = (ct)2 − x2 ,

gμν → g(x)μν

xμ → x′ 
μ = Λμ

νxν or in matrix form x → x′ = Λx ,
Λμ

ν Λ

ΛTgΛ = g or equivalently Λσ
μgστΛτ

ν = gμν .
Λ O(1,3)

× O(3) OTO = I OT(−I )O = (−I ) .
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The rotations and boosts form the group of restricted Lorentz transformations denoted as , 
which have  (`special’  ) and  ( ). This is the continuous subgroup of the 
Lorentz group  

For any of the  sufficiently close to  the identity we can write for some small arbitrary  and fixed 
linearly independent  real antisymmetric matrices  

 , 

where the  are recognized as the generators of the Lie group . So the restricted Lorentz 
group  is a Lie group. There are only 6 independent  since there are at most 6 linearly 
independent  real antisymmetric matrices.  

• Rotations make up 3 (rotations about x, y and z) with ; and  
• Lorentz boosts make up 3 (Lorentz boosts in x, y and z directions) with .  

It can be shown from the defining relationship  that the Lorentz Lie algebra must have the form 
 

It is conventional to write the Lie algebra for the restricted Lorentz transformations in this form rather than 
in terms of its structure constants. The  representation is the defining representation of the Lorentz 
group. There are two Casimir invariants of the Lorentz group and these are  and . 

The Poincaré group is the group made up of spacetime translations and Lorentz transformations. 

SO+(1,3)
det Λ = 1 ⟹ S Λ0

0 ≥ 1 ⟹ +
O(1,3) .

Λ ωμν
4 × 4 Mμν

Λα
β = [exp (−

i
2

ωμνMμν)]
α

β
Mμν SO+(1,3)

SO+(1,3) Mμν

4 × 4
Ji ≡ 1

2 ϵijkMjk

Ki = M0i

ΛTgΛ = g
[Mμν, Mρσ] = i (gνρMμσ − gμρMνσ − gνσMμρ + gμσMνρ) .

4 × 4
J2 K2
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Recall that in quantum mechanics for a spinless particle the three-momentum and angular momentum 
operators in coordinate space representation are respectively 

       or equivalently        , 
where we have defined here 

 
Generalizing these three-vector quantities to four-vectors leads to the Hermitian quantities 

 
The  are the generators of the spacetime translations and commute with each other (they form an 
abelian group) and the  are the generators of the (nonabelian) Lorentz group since they can be 
shown to satisfy the Lorentz Lie algebra. It is also readily shown that . 
Since the generators  and  are Hermitian then the Lie group elements are unitary and so we have 
a unitary representation. 

We have arrived at the Poincaré Lie algebra consisting of the 4+6=10 generators,  and  
 

. 

Generalizing to include spin we have  and  with  generating orbital 
rotations and  generating rotations of intrinsic spin. The angular momentum  is a three-vector and 
not a convenient quantity in a relativistic framework. Instead we use th Pauli-Lubanski pseudovector 

 .

P ≡ − iℏ∇ and J = L ≡ x × P Ji = ϵijkxjPk = 1
2 ϵijkMjk

Mij = xiPj − xjPi .

Pμ ≡ (H/c, P) ≡ iℏ∂μ and Mμν ≡ xμPν − xνPμ .
Pμ

Mμν

[Pμ, Mρσ] = iℏ(gμρPσ−gμσPρ)
Pμ Mμν

Pμ Mμν,
[Pμ, Pν] = 0 , [Pμ, Mρσ] = i(gμρPσ − gμσPρ),
[Mμν, Mρσ] = i (gνρMμσ − gμρMνσ − gνσMμρ + gμσMνρ)

J = L + S Mμν = Lμν + Σμν Lμν

Σμν J

Wμ ≡ − 1
2 ϵμνρσMνρPσ
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The Poincaré group has only two Casimir invariants, 
 , 

where  is the spin of the particle in its rest frame and  is the particle rest mass. A massive particle has 
 possible spin states in the usual way, , e.g., for spin-half particles 

. It can also be shown that for massless particles only two helicity states are possible, , 

e.g., for photons the only allowed spin states are . 

Summary: Particles are categorized according to the representation of the Poincaré group that they 
transform under, which is specified by their Casimir invariants and hence by their mass  and their spin . 
Allowed values for  are the non-negative half-integers,   

P2 = m2c2 and W2 = − m2s(s + 1)
s m

2s + 1 ms = s, s − 1,…, − s + 1, − s
ms = ± 1

2 λ = ± s
λ = ± 1

m s
s s = 0, 1

2 ,1, 3
2 , …
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Classical	mechanics:	Lagrangian	formulaSon		
(See	Chapter	2,	Secs	2.1	and	2.3)
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Lagrangians: For a classical system with holonomic constraints and the resulting generalized 
coordinates  and where the potential for the system is monogenic (includes conservative 
potentials and electromagnetic interactions), the equations of motion are given by the Euler-Lagrange 
equations 

, 

where  is the Lagrangian for the system,  is the kinetic energy and  is the potential. 

The action associated with the system is a functional of the path in coordinate space between initial time 
 and final time  and is defined as 

 . 

Hamilton’s Principle is that the equations of motion correspond to a stationary point of the action under 
variations of the classical path with end-points fixed, which follows since we can show that 

. 

Normal modes:  For sufficiently small oscillations around a stable equilibrium the leading terms are the 
part of  quadratic in velocities  and the part of  quadratic in the coordinates . The resulting 
approximate Lagrangian  then has the form of  coupled harmonic oscillators, which after 
diagonalization reduces to  independent harmonic oscillators called normal modes. Any sufficiently 
small classical motion of the system can be expressed as a linear superposition of the normal modes. 

q1, …, qN

d
dt

∂L
∂ ·qi

−
∂L
∂qi

= 0 and ·qi =
dqi

dt
for i = 1,⋯N

L ≡ T − V T V

ti tf
S[ ⃗q ] ≡ ∫ tf

ti
dt L( ⃗q, · ⃗q, t)

0 =
δS[ ⃗q ]
δqj(t)

=
∂L
∂qj

−
d
dt

∂L
∂ ·qj

for j = 1,2,…, N

T ·qj V qj
L N

N

LQM@_2HX
Z6h

_2H�iBpBbiB+
Z6h

:2M2`�H

_2H�iB
pBiv

bK
�HH

2`

7�bi2`

bi`Q
M;2

`

*H�bbB+�H
J2+?�MB+b

Zm�MimK
J2+?�MB+b

aT2+B�H
_2H�iBpBiv

_2H�iBpBbiB+
Zm�MimK
J2+?�MB+b

6B;m`2 3, UTX3N "2ii2` p2`bBQMV

~q (ti)

~q (tf)
�~q (t)

6B;m`2 N, UTXRy9V
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(See	Chapter	2,	Sec.	2.4)
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Hamiltonians: The Lagrangian Hessian matrix  is defined by 
 . 

 is real and symmetric and so can be diagonalized by an orthogonal transformation with its real 
eigenvalues down the diagonal.  
We define the generalized (i.e., canonical) momenta as 

 . 
Provided that  is a positive definite matrix (only positive eigenvalues  concave up) we can define 
the Hamiltonian for the system as a Legendre transform of the Lagrangian with respect to the generalized 
velocities as 

 . 

It is not difficult to show that the Euler-Lagrange equations are equivalent to Hamilton’s Equations, which 
are 

 . 

So Hamilton’s equations, Hamilton’s Principle and the Euler-Lagrange equations are three equivalent 
ways of describing the classical motion of such systems. 

If  has a mixture of positive and negative eigenvalues the energy is typically not bounded below and 
such systems are unphysical and so not relevant. Some important physical systems (e.g., gauge theories 
and theories with fermions) can have a mixture of positive and zero eigenvalues. Such systems are called 
singular systems and need to be treated carefully using constrained Hamiltonian dynamics, the Dirac-
Bergmann algorithm and the Dirac bracket. We cannot discuss these subtleties here but they are treated 
in detail for classical systems in Sec. 2.9.

ML
(ML)ij ≡ ∂2L /∂ ·qi∂ ·qj

ML

pi(t) ≡ ∂L /∂ ·qi or equivalently ⃗p ≡ ∂L /∂ · ⃗q
ML ⟹

H( ⃗q, ⃗p, t) ≡ (∑N
i=1 pi

·qi) − L( ⃗q, · ⃗q( ⃗p), t) = ⃗p ⋅ · ⃗q − L

·qi =
∂H
∂pi

, ·pi = −
∂H
∂qi

and
dH
dt

= −
∂L
∂t

ML
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Poisson brackets: The Poisson bracket formulation of classical mechanics underlies the deep 
connection between classical and quantum physics as we will soon show. It is the basis of Dirac’s 
canonical quantization of classical systems. We refer to the space of points  as phase space and 
any doubly differentiable function of phase space is a dynamical variable. Dynamical variables may have 
an explicit time dependence and so can be written as The Poisson bracket of two 
dynamical variables  and  is defined as 

 

If ,  and  are dynamical variables and if  and  are real constants, then it follows that 
(i) Closure: is also a function on phase space; 
(ii) Antisymmetry: ; 
(iii) Bilinearity: ; 
(iv) Product rule: ; 
(v) Jacobi identity: . 

Note: These are identical to the properties of  the commutator . 
It is easily seen that 

, 

which is the analog of Ehrenfest’s theorem in quantum mechanics .

( ⃗q, ⃗p)

F( ⃗q(t), ⃗p(t), t) .
F G

{F, G} ≡
N

∑
j=1 ( ∂F

∂qj

∂G
∂pj

−
∂F
∂pj

∂G
∂qj ) .

A B C a b
{A, B}

{A, B} = − {B, A}
{aA + bB, C} = a {A, C} + b {B, C}

{A, BC} = {A, B} C + B {A, C}
{A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0

[⋯, ⋯]

dF
dt

=
N

∑
j=1 ( ∂F

∂qj

dqj

dt
+

∂F
∂pj

dpj

dt ) +
∂F
∂t

=
N

∑
j=1 ( ∂F

∂qj

∂H
∂pj

−
∂F
∂pj

∂H
∂qj ) +

∂F
∂t

= {F, H} +
∂F
∂t

d ̂F
dt

=
1
iℏ

[ ̂F, Ĥ] +
∂ ̂F
∂t
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RelaSon	between	Quantum	Mechanics	and	Classical	Mechanics	
(See	Chapter	2,	Sec.	2.5)
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For any Heisenberg picture operator, , the operator form of Ehrenfest’s theorem is 

 , 

where  is the Heisenberg-picture quantum Hamiltonian operator. The canonical 
commutation relations are 

 . 
It is is easily shown by induction that we can define operator differentiation using 

 

Using these definitions then for any  expressed as a power series in ’s and ’s it follows that 
 

Choosing the special cases  and  leads to 

 , 

which we recognize is the operator form of Hamilton’s equations 

 . 

So we see that the Heisenberg-picture operators satisfy the classical equations of motion! 

̂F(t) ≡ F( ̂ ⃗q(t), ̂ ⃗p(t), t)
d ̂F
dt

=
1
iℏ

[ ̂F, Ĥ] +
∂ ̂F
∂t

Ĥ(t) ≡ H( ̂ ⃗q(t), ̂ ⃗p(t), t)

[ ̂qi(t), ̂pj(t)] = iℏδij, [ ̂qi(t), ̂qj(t)] = [ ̂pi(t), ̂pj(t)] = 0

[ ̂qi, ̂pn
j ] = iℏδij (n ̂pn−1

i ) ≡ iℏ
∂ ̂pn

j

∂ ̂pi
, [ ̂pi, ̂qn

j ] = − iℏδij (n ̂qn−1
i ) ≡ − iℏ

∂ ̂qn
j

∂ ̂qi
,

[ ̂qi, ̂qn
j ] = 0 ≡ iℏ

∂ ̂qn
j

∂ ̂pi
, [ ̂pi, ̂pn

j ] = 0 ≡ − iℏ
∂ ̂pn

j

∂ ̂qi
.

̂F ̂q ̂p
[ ̂qi, ̂F] ≡ iℏ ∂ ̂F/∂ ̂pi and [ ̂pi, ̂F] ≡ − iℏ ∂ ̂F/∂ ̂qi .

̂F = ̂qi
̂F = ̂pi

iℏ · ̂qi = [ ̂qi, Ĥ] = iℏ
∂Ĥ
∂ ̂pi

, iℏ · ̂pi = [ ̂pi, Ĥ] = − iℏ
∂Ĥ
∂ ̂qi

and
·
Ĥ =

∂Ĥ
∂t

· ̂qi =
∂Ĥ
∂ ̂pi

, · ̂pi = −
∂Ĥ
∂ ̂qi

and
·
Ĥ =

∂Ĥ
∂t
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Relation to quantum mechanics: For a macroscopic action the classical path will dominate and so we 
can expand any dynamical operator  around this path using a Taylor expansion 
around the classical path . We then have 

 

Then for two such operators we can form their commutator using the canonical commutation relations 
and retain the nonvanishing  terms to give

   

 . 

Note that:   and  . 
The Correspondence Principle: We have then arrived at the Correspondence Principle, which is that 

. 

This is the basis of Dirac’s Canonical Quantization approach, where the classical Hamiltonian 
 is replaced by the quantum Hamiltonian . This procedure is well 

defined up to possible ordering ambiguities of the  and . For singular systems the 
Correspondence Principle survives by replacing the Poisson bracket with the Dirac bracket (see Sec 2.9).

̂F ≡ F( ̂ ⃗q(t), ̂ ⃗p(t), t)
( ⃗qc(t), ⃗pc(t))

̂F = F( ⃗qc, ⃗pc, t) + ( ̂ ⃗q − ⃗qc) ⋅
∂F( ⃗qc, ⃗pc, t)

∂ ⃗qc
+ ( ̂ ⃗p − ⃗pc) ⋅

∂F( ⃗qc, ⃗pc, t)
∂ ⃗pc

+ ⋯

𝒪(ℏ)

[ ̂F, Ĝ] = [( ̂ ⃗q − ⃗qc) ⋅
∂F
∂ ⃗qc

, ( ̂ ⃗p − ⃗pc) ⋅
∂G
∂ ⃗pc ] + [( ̂ ⃗p − ⃗pc) ⋅

∂F
∂ ⃗pc

, ( ̂ ⃗q − ⃗qc) ⋅
∂G
∂ ⃗qc ] + 𝒪(ℏ2)

= iℏ ( ∂F
∂ ⃗qc

⋅
∂G
∂ ⃗pc

−
∂F
∂ ⃗pc

⋅
∂G
∂ ⃗qc ) + 𝒪(ℏ2) = iℏ {F, G} + 𝒪(ℏ2)

[ ̂qi, ̂pj] = iℏδij, [ ̂qi, ̂qj] = [ ̂pi, ̂pj] = 0 {qi, pj} = δij, {qi, qj} = {pi, pj} = 0

lim
ℏ→0

1
iℏ

[ ̂F, Ĝ] = {F, G}

H( ⃗q(t), ⃗p(t), t) Ĥ ≡ H( ̂ ⃗q(t), ̂ ⃗p(t), t)
̂ ⃗q(t) ̂ ⃗p(t)
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Interaction picture: Consider a time-dependent Schrödinger picture Hamiltonian of the form 
 , 

where  is a time-independent ``free" part of the Hamiltonian and  is a possibly time-dependent 
``interaction" part of the Hamiltonian. The free and full evolution operators are respectively 

 . 
The Schrödinger picture state evolves time as  , where the two pictures coincide at 
some arbitrary time . 

The relationship between the Schrödinger ( ), interaction ( ) and Heisenberg ( ) pictures and the 
definition of the interaction picture evolution operator are 

  

This defines the interaction picture in terms of the other two pictures, 
   and    .  

So the interaction picture operators and state of the system are respectively given by 
       and 

 . 

we have picture-independence of expectation values as we should, since 
 . 

Ĥs(t) = Ĥ0 + Ĥint(t)
H0 Hint(t)

Û0(t′ ′ , t′ ) ≡ e−iĤ0(t′ ′ −t′ )/ℏ and Û(t′ ′ , t′ ) ≡ Te−i ∫t′ ′ 
t′ dt Ĥs(t)/ℏ

|ψ, t⟩s = Û(t, t0) |ψ⟩h
t0

s I h

s U h with s
U0 I UI h ⇒ Û(t, t0) ≡ Û0(t, t0)ÛI(t, t0) or ÛI(t, t0) ≡ Û†

0(t, t0)Û(t, t0)

̂Ah(t)= Û(t, t0)† ̂AsÛ(t, t0)= ÛI(t, t0)† ̂AI(t)UI(t, t0) |ψ⟩h = Û(t, t0)† |ψ, t⟩s = ÛI(t, t0)† |ψ, t⟩I

̂AI(t) = Û0(t, t0)† ̂AsÛ0(t, t0) = ÛI(t, t0) ̂Ah(t)ÛI(t, t0)†

|ψ, t⟩I = Û0(t, t0)† |ψ, t⟩s = ÛI(t, t0) |ψ⟩h

s⟨ψ, t | ̂As |ψ, t⟩s = h⟨ψ | ̂Ah(t) |ψ⟩h = I⟨ψ, t | ̂AI(t) |ψ, t⟩I
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Define  in the interaction picture as , then 
 . 

Recall the Schrödinger equation 

 . 

This can be written as 

 , 

and leads to 

. 

Using  we have 

 , 

which leads to the interaction-picture version of the Dyson formula 
 

In a more compact form the interaction-picture Dyson formula is  

 , 

where  is the time-ordering operator that puts operators at later times to the left of those at earlier times. 

Ĥint(t) ĤI(t)
ĤI(t) ≡ (Ĥint)I = Û0(t, t0)†Ĥint(t)Û0(t, t0)

iℏ
d
dt

|ψ(t)⟩ = Hs(t) |ψ(t)⟩

iℏ
d
dt

(e−iĤ0(t−t0)/ℏ |ψ, t⟩I) = {Ĥ0 + Ĥint(t)}(e−iĤ0(t−t0)/ℏ |ψ, t⟩I)

iℏ
d
dt

|ψ, t⟩I = e+iĤ0(t−t0)/ℏĤint(t)e−iĤ0(t−t0)/ℏ |ψ, t⟩I = Û0(t, t0)†Ĥint(t)Û0(t − t0) |ψ, t⟩I = ĤI(t) |ψ, t⟩I

|ψ, t⟩I = ÛI(t, t0) |ψ⟩h
d
dt

ÛI(t, t′ ) = − (i/ℏ)ĤI(t)ÛI(t, t′ )

ÛI(t′ ′ , t′ )= ̂I + ( −i
ℏ ) ∫ t′ ′ 

t′ 
dt1ĤI(t1) + ( −i

ℏ )2 ∫ t′ ′ 
t′ 
dt1 ∫ t1

t′ 
dt2 ĤI(t1)ĤI(t2) + ( −i

ℏ )3 ∫ t′ ′ 
t′ 

dt1 ∫ t1
t′ 
dt2 ∫ t2

t′ 
dt3 ĤI(t1)ĤI(t2)ĤI(t3) + ⋯

ÛI(t′ ′ , t′ ) = U0(t′ ′ , t0)†Û(t′ ′ , t′ )Û0(t′ , t0) = T(exp {(−i/ℏ) ∫ t′ ′ 
t′ 

dt ĤI(t)})
T
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Green’s functions: Consider quantum mechanics with coordinate and momentum operators in the 
Heisenberg picture denoted as  and  respectively for . The canonical commutation 
relations are 

 . 
For simplicity consider a one-dimensional system. In the Schrödinger picture  and in the 
Heisenberg picture The amplitude for the system to evolve from  at time  to 

 at time  is called the Green’s function, , of the system, 
 . 

Now dividing  into  equal intervals of length 
 

where we see that ,  and . We omit the labels  and  for brevity from now on 
in this section. Noting the completeness of the coordinate-space and momentum-space bases 
in both the Heisenberg and Schrödinger pictures, 

 
we can write 

 . 

Since  and we can write 
 .  

Using  leads to 
 

  .

̂qi(t) ̂pi(t) i = 1,…, N

[ ̂qi(t), ̂pj(t)] = [ ̂qi(t), ̂pj(t)] = 0 and [ ̂qi(t), ̂pj(t)] = iℏδij
̂q |q⟩s = q |q⟩s

̂q(t) |q, t⟩h = q(t) |q, t⟩h q′ t′ 

q′ ′ t′ ′ G(q′ ′ , q′ ; t′ ′ , t′ )
G(q′ ′ , q′ ; t′ ′ , t′ ) ≡ h⟨q′ ′ , t′ ′ |q′ , t′ ⟩h = s⟨q′ ′ | Û(t′ ′ , t′ ) |q′ ⟩s

(t′ ′ − t′ ) (n + 1)
δt = (t′ ′ − t′ )/(n + 1) with tj ≡ t′ + jδt for j = 0,1,⋯, n + 1

tj+1 = tj + δt t′ ′ = tn+1 t′ = t0 h s

∫ dq |q, t⟩⟨q, t | = ∫ dq |q⟩⟨q | = ∫ dp |p, t⟩⟨p, t | = ∫ dp |p⟩⟨p | = ̂I

⟨q′ ′ , t′ ′ |q′ , t′ ⟩ = ∫ dq1⋯ ∫ dqn ⟨q′ ′ , t′ ′ |qn, tn⟩⋯⟨q2, t2 |q1, t1⟩⟨q1, t1 |q′ , t′ ⟩
Û(t′ ′ , t′ ) = e−iĤ(t′ ′ −t′ )/ℏ

⟨qj+1, tj+1 |qj, tj⟩=⟨qj+1 |e−iδtĤ/ℏ |qj⟩=δ(qj+1−qj)−i(δt/ℏ)⟨qj+1 | Ĥ |qj⟩+O(δt2)
⟨q |p⟩ = (1/ 2πℏ)eipq/ℏ

⟨qj+1 | Ĥ |qj⟩ = ⟨qj+1 |H( ̂q, ̂p) |qj⟩ = ∫ dpj ⟨qj+1 |pj⟩⟨pj |H( ̂q, ̂p) |qj⟩
= ∫ dpj H′ (qj, pj)⟨qj+1 |pj⟩⟨pj |qj⟩ = ∫ (dpj /2πℏ)eipj(qj+1−qj)/ℏ H(qj, pj)



Foundations	of	QFT,	ANU	Summer	School,	2023

Path	integral	approach	to	Quantum	Mechanics		
(See	Chapter	4,	Sec.	4.1.12)

21

Hence we can write 

 

     . 
Using this result gives 

 

 
The last line of is shorthand notation for the line above and represents an integration over all possible 
paths in phase space with the coordinate endpoints  and . There are no restrictions 
on the momentum endpoints. 

Consider a time-independent Hamiltonian of the form  then using 

 

, 

where  provides an infinitesimal damping term to define the integral.

⟨qj+1, tj+1 |qj, tj⟩ = ∫ (dpj /2πℏ)eipj(qj+1−qj)/ℏ {1 − i(δt/ℏ)H(qj, pj) + 𝒪(δt2)}
= ∫ (dpj /2πℏ)ei(δt/ℏ)[pj{(qj+1−qj)/δt}−H(qj,pj)] + 𝒪(δt2)

⟨q′ ′ , t′ ′ |q′ , t′ ⟩= lim
n→∞

∫ ∏n
i=1 dqi∫∏n

k=0 (dpk /2πℏ)ei∑n
j=0δt[pj{(qj+1−qj)/δt}−H(qj,pj)]/ℏ

≡ ∫ 𝒟q 𝒟p e(i/ℏ) ∫t′ ′ 
t′ dt[p ·q−H(q,p)]

q(t′ ′ ) = q′ ′ q(t′ ) = q′ 

Ĥ ≡ H( ̂p, ̂q) = ( ̂p2/2m) + V( ̂q)

∫ dp
2πℏ exp { i

ℏ δt [p ·q − p2

2m ]} → ∫ dp
2πℏ exp { i

ℏ δt [p ·q − (1 − iϵ) p2

2m ]}
= m

2iπℏδt(1 − iϵ) exp { i
ℏ δt(1 + iϵ)[ 1

2 m ·q2]}
ϵ → 0+



Foundations	of	QFT,	ANU	Summer	School,	2023

Path	integral	approach	to	Quantum	Mechanics		
(See	Chapter	4,	Sec.	4.1.12)

22

Hence we have  

  

. 

 This is conventionally expressed in the compact form 

 

where  is the usual Lagrangian for the  form of Hamiltonian that we are considering plus a 
damping term, 

, 

where  provides an infinitesimal damping term to help define the integral. This is essential and 
leads to the Feynman boundary conditions in QFT as we will later see. We can always remove an infinite 
constant so that . We do not fuss here about the formal mathematical existence of the 
continuum limit, , of single path integrals as we will later see that only ratios of path integrals 
are physically important. It is the continuum limit of such ratios that is physically relevant. 

We can also understand the damping term as the result of formulating the theory in Euclidean space 
. This replaces the evolution operator for a time-independent 

Hamiltonian according to 
 . 

Repeating all steps in Euclidean space leads to non=oscillatory damped integrals. Then rotating back to 
Minkowski space leads to a residual term that is precisely the above damping term.

⟨q′ ′ , t′ ′ |q′ , t′ ⟩ = limn→∞ ( m
(2iπℏδt)(1 − iϵ) )

(n+1)/2
∫ ∏n

i=1 dqi

× exp { i
ℏ δt∑n

j=0 [(1 + iϵ) m
2 ( qj+1 − qj

δt )
2

− (1 − iϵ)V(qj)]}
⟨q′ ′ , t′ ′ |q′ , t′ ⟩ = ∫ 𝒟q exp { i

ℏ S[q]} = ∫ 𝒟q exp { i
ℏ ∫ t′ ′ 

t′ 
dt L(q, ·q)}

L(q, ·q)

L(q, ·q) = 1
2 m ·q2 − V(q) + iϵ( 1

2 m ·q2 + V(q))
ϵ → 0+

V(q) > 0
lim(n → ∞)

(t′ ′ − t′ ) → − i(τ′ ′ − τ′ ) ≡ − iℏβ

exp(−iĤ(t′ ′ − t′ )/ℏ) → exp( − (τ′ ′ − τ′ )Ĥ/ℏ) = exp(−βĤ )
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Spectral function: The spectral function, denoted  here, is defined as the trace of the evolution 
operator 

  

 

 

where the integration is over all periodic paths in coordinate space with period . There is no similar 
periodicity requirement in momentum space. Here we have again assumed  so that 

. 

Partition function: The partition function of statistical mechanics is 

  

, 

where the Euclidean Lagrangian is  with  

F

F(t′ ′ − t′ ) ≡ tr (e−iĤ(t′ ′ −t′ )/ℏ) = ∑n ⟨n |e−iĤ(t′ ′ −t′ )/ℏ |n⟩ = ∑n e−iEn(t′ ′ −t′ )/ℏ

= ∫ dq s⟨q |e−iĤ(t′ ′ −t′ )/ℏ |q⟩s = ∫ dq h⟨q, t′ ′ |q, t′ ⟩h = ∫ dq G(q, q; t′ ′ , t′ )
= ∫ 𝒟p 𝒟q(periodic) exp { i

ℏ ∫ t′ ′ 
t′ 

dt [p ·q − H(p, q)]} = ∫ 𝒟q(periodic) exp { i
ℏ ∫ t′ ′ 

t′ 
dt L(q, ·q)}

(t′ ′ − t′ )
Ĥ = ( ̂p2/2m) + V( ̂q)

L = 1
2 m ·q2 − V(q)

Z(β) = ∑∞
n=0 exp(−βEn) = tre−βĤ = s⟨q |e−βĤ |q⟩s = ∫ 𝒟p 𝒟q(periodic) e

1
ℏ ∫τ′ ′ 

τ′ dτ [ip ·q − H(p, q)]

= ∫ 𝒟p 𝒟q(periodic) exp { 1
ℏ ∫ τ′ ′ 

τ′ 
dτ [ip ·q − H(p, q)]} = ∫ 𝒟q(periodic) exp {− 1

ℏ ∫ τ′ ′ 
τ′ 

dτ LE(q, ·q)}
LE = 1

2 m ·q2 + V(q) ·q ≡ dq/dτ .
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Consider now adding an external source term to the Hamiltonian operator such that 
 

which leads to the source-dependent evolution operator in the Schrödinger picture, 

. 
Then we can go to an interaction picture by identifying 

 , 
 ,  

 . 
The source-dependent Green's function is then 

 

. 

The spectral function becomes 

 . 
Using the definition of the functional derivative it follows that 

 .

ĤJ(t) ≡ H − J(t) ̂q = ( ̂p2/2m) + V( ̂q) − J(t) ̂q

ÛJ(t′ ′ , t′ ) = Te−(i/ℏ)∫ t′ ′ 

t′ 
dt [Ĥ−J(t) ̂q]

Ĥ(t) → ĤJ(t) , Ĥ0 → Ĥ , Û(t′ ′ , t′ ) → ÛJ(t′ ′ , t′ ) , Û0(t′ ′ , t′ ) → Û(t′ ′ , t′ ) = e−iĤ(t′ ′ −t′ )

Ĥint(t) = − J(t) ̂q , ĤI(t) = Û(t, t0)†Ĥint(t)Û(t, t0) = − J(t) ̂qI(t)

and ÛI(t′ ′ , t′ ) = Te−(i/ℏ)∫ t′ ′ 

t′ 
dt HI(t) = Te (i/ℏ)∫ t′ ′ 

t′ 
dt J(t) ̂qI(t)

h⟨q′ ′ , t′ ′ |q′ , t′ ⟩J
h = s⟨q′ ′ |Te−(i/ℏ)∫ t′ ′ 

t′ 
dt[Ĥ−J(t) ̂q] |q′ ⟩s = I⟨q′ ′ , t′ ′ |Te (i/ℏ)∫ t′ ′ 

t′ 
dt J(t) ̂qI(t) |q′ , t′ ⟩I

= ∫ 𝒟p 𝒟q e (i/ℏ)∫ t′ ′ 

t′ 
dt[p ·q − H(p, q) + J(t)q(t)] = ∫ 𝒟q e (i/ℏ)∫ t′ ′ 

t′ 
dt[L(q, ·q) + J(t)q(t)]

FJ(t′ ′ , t′ )=tr{ÛJ(t′ ′ , t′ )}= ∫ 𝒟q(periodic)e
(i/ℏ)∫ t′ ′ 

t′ 
dt[L(q, ·q) + J(t)q(t)]

(−iℏ)k δk

δJ(t1)⋯δJ(tk)
ÛI(t′ ′ , t′ )

J=0

= T ( ̂qI(t1)⋯ ̂qI(tk))
J=0

= T ( ̂qh(t1)⋯ ̂qh(tk))
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We take the source to zero after the derivatives are taken and we have recognized that  
 when  and so . We observe that 

 

 

 , 

 where recall the understood boundary conditions  and .  

Now consider the consequence of taking  and the limit , which corresponds 
to formulating in Euclidean space and then rotating back to Minkowski space. We see that 

 

  
and so taking the limit  suppresses all contributions in the sum relative to that from the 
ground state . Define . Then finally we can 
define the generating functional  as 

 .  

Ĥint → 0 J → 0 ̂qI(t) → ̂qh(t)

h⟨q′ ′ , t′ ′ |T [ ̂qh(t1)⋯ ̂qh(tk)] |q′ , t′ ⟩h = (−iℏ)k δk

δJ(t1)⋯δJ(tk)
h⟨q′ ′ , t′ ′ |q′ , t′ ⟩J

h J=0

= (−iℏ)k δk

δJ(t1)⋯δJ(tk)
∫ 𝒟q e (i/ℏ)∫ t′ ′ 

t′ 
dt [L(q, ·q) + J(t)q]

J=0

= ∫ 𝒟q q(t1)⋯q(tk)exp {(i/ℏ) ∫ t′ ′ 
t′ 

dt L(q, ·q)}
q(t′ ′ ) = q′ ′ q(t′ ) = q′ 

T = t′ ′ = − t′ T → ∞(1 − iϵ)

FJ(T, − T ) = tr{ÛJ(T, − T )} = ∑n s⟨En | ÛJ(T, − T ) |En⟩s
= ∑n s⟨En | Û(T, t0)ÛI(T, − T )Û(−T, t0)† |En⟩s = ∑n e−iEn(2T )/ℏ

s⟨En | ÛI(T, − T ) |En⟩s
T → ∞(1 − iϵ)

|Ω⟩ = |E0⟩s F(T, − T ) ≡ FJ=0(T, − T ) = ∑n e−iEn(2T )/ℏ

Z[J]

Z[ j] ≡ lim
T→∞(1−iϵ)

Fj(T, − T )
F(T, − T )

= lim
T→∞(1−iϵ)

⟨Ω | ÛI(T, − T ) |Ω⟩
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Equivalent ways of writing the generating functional: Combining all of the results we see that the 
generating functional  can be written in a variety of ways, 

   

 . 

Vacuum expectation values of time-ordered products: Making use of the earlier result of 
differentiating  with respect to the source we finally arrive at a key result that we will exploit when 
we generalize to QFT, which is that 

  

  . 

Important lesson: The vacuum, expectation value of the time-ordered products of Heisenberg-picture 
operators can be obtained from the generating functional and can be understood in terms of the path (or 
functional) integral in terms of the action, where we integrate over paths (functions) periodic in time.

Z[J]

Z[ j] ≡ lim
T→∞(1−iϵ)

Fj(T, − T )
F(T, − T )

= lim
T→∞(1−iϵ)

tr{Ûj(T, − T )}
tr{Û(T, − T )}

= lim
T→∞(1−iϵ)

tr [Te−i ∫T
−Tdt [Ĥ−J ̂q]]

tr [Te−i ∫T
−Tdt Ĥ]

= lim
T→∞(1−iϵ)

⟨Ω | ÛI(T, − T ) |Ω⟩ = lim
T→∞(1−iϵ)

∫ 𝒟q(periodic) e(i/ℏ){S[q]+ ∫T
−T dt Jq}

∫ 𝒟q(periodic) e(i/ℏ)S[q]

ÛI(t′ ′ , t′ )

⟨Ω |T ̂qh(t1)… ̂qh(tk) |Ω⟩ = (−iℏ)k δk

δJ(t1)⋯δJ(tk)
Z[J]

J=0

= lim
T→∞(1−iϵ)

∫ 𝒟q(periodic) q(t1)⋯q(tk) e(i/ℏ)S[q]/ℏ

∫ 𝒟q(periodic) e(i/ℏ)S[q]


