An Overview of High Energy Astroparticle Physics

Roland Crocker CIPSS 2023

roland.crocker@anu.edu.au

Part 0: Preliminaries

Energy Scales

unit	meaning	
eV		optical/UV regime;
		atomic transitions
keV	10^3 eV	X-ray regime
MeV	10^6 eV	"soft" γ -rays; nuclear line regime
GeV	10^9 eV	"high energy" γ -ray regime;
		the orbiting <i>Fermi</i> -LAT operates
		in the 100 MeV - 100 GeV range
TeV	$10^{12} {\rm eV}$	"very high energy" γ -ray regime;
		ground-based imaging air Cherenkov
		telescopes (IACTs) operate in the
		10 GeV - 100 TeV + range;
		note: 1 TeV \sim 1 erg
PeV	$10^{15} {\rm eV}$	rough energy of cosmic ray "knee";
		energy regime of astrophysical
		neutrinos detected by IceCube
EeV	$10^{18} {\rm eV}$	regime of "ultra-high energy"
		cosmic rays
ZeV	$10^{21} {\rm eV}$	approximate energy scale of highest
		energy cosmic ray ever recorded

Continuum Emission Processes from Cosmic Rays

Synchrotron

Bremsstrahlung

'Hadronic' emission:

 $pp \rightarrow stuff$ $p\gamma \rightarrow stuff$

Part I: Cosmic Rays: What are they good for?

Victor Hess

- Hess ascended to a height of a few km in a balloon (without oxygen!) carrying a gold-leaf electroscope
- In light of the recently-detected phenomenon of radioactivity, he anticipated that as he moved further from terrestrial sources of radioactivity and the ionisation they produce, the charge on the electroscope would decline
- Instead, he found the opposite: the charge increased with altitude; there seemed to be a source of ionising 'radiation' coming from space
- ...we are now stuck with the terminology of cosmic 'rays'

Cosmic Rays: What are they good for?

- Q: What are they?
- A: non-thermal, charged particle populations; dominantly protons and heavier ions and electrons
- low energy CRs accelerated in the Sun
- Sun's magnetic activity affects flux we detect

G. Sigl, http://www.iap.fr/users/sigl/homepage.html

Cosmic Ray Spectrum: Features

- Almost featureless (slightly broken) POWER LAW ~E^{-2.7}
 over 10+ decades in energy / 33+ decades in flux
- * Low energy turn-over: solar modulation
- * Knee
- * Ankle
- * High energy turn-over: GZK "cut-off" (?)

Spallation/Confinement: Energy-dependence of 2ndary/primary CR nuclei

- * Abundance ratio: $B/C \propto E^{-0.6}$
- Observed spectrum:
- * $\phi(E) = dN/dE \propto E^{-2.7}$
- * Interpretation:
- * Propagation depends on E
- * Confinement time: $\tau(E) \propto E^{-0.6}$...but why this exponent? Expect $\propto E^{-0.3}$ (for Kolmogorov spectrum of turbulence)
- * Implication: Injection spectrum $Q(E) \propto E^{-2.1}$...this is consonant with expectations for astrophysical **shock acceleration**

CR detection

- Above ~10¹⁴ eV, we cannot launch into space detectors with sufficiently large areas to detect the rapidly declining CR flux
- Instead we have to rely on detecting secondary and tertiary particles initiated in air showers by the collision of the primary cosmic ray high in this atmosphere

Figure 10: Schematic of cosmic ray extensive air shower with different detector technologies (credit: F. Schröder et al. 2017). Different techniques have advantages in different energy ranges.

E³-Weighted Cosmic Ray Spectrum

Why are CRs of astrophysical interest?

- provide energy density / pressure equivalent to other ISM phases
 ⇒ help to support the scale height of the gaseous disk
- dominate heating and ionisation of H2

⇒ maintain temp of H2 and ensure it is coupled to magnetic fields

 \Rightarrow affects star formation

- probably help to launch galactic outflows
- mutagenic effect on terrestrial life

Aside: particles first discovered in/as comic rays:

- Positron 1932 by Anderson (shared 1936 Nobel Prize with Victor Hess)
- Muon 1936 by Anderson and Nedermeyer
- Pion 1947 by Powell and co-workers (Nobel Prize 1950)
- Kaon 1947 by Rochester and Butler
- CRs interaction are even today detected at centre-of-mass energies (up to ~PeV) many orders of magnitude higher than available in collider experiments (LHC: ~14 TeV)

Cosmic Rays: What are they good for?

- Cosmic rays can be measured locally and their presence throughout the Galactic disk can be inferred from its gamma-ray emission
- Similarly, we know from gamma-ray observations that there are diffuse cosmic ray populations suffusing the disks of external galaxies (local group, nearby starbursts)

The Galactic Plane as seen by Fermi

Figure 1: Fermi-LAT all sky image in Galactic co-ordinates. Credit: NASA/DoE.

A general point about non-thermal emission

- The non-thermal emission from astrophysical objects tends to hidden by the very bright thermal emission by stars and dust in the IR optical UV band
- ...but if we go to higher or lower photon wavelengths outside these bands, non-thermal emission can become evident

http://www-zeuthen.desy.de/astro-workshop/vortraege/donnerstag/puehlhofer_zeuthen.pdf

Non-thermal emission

• Surprisingly, astrophysical photons with very different wavelengths can share the same morphology

Non-thermal emission

- Surprisingly, astrophysical photons with very different wavelengths can share the same morphology
- This reflects the fact that they are initiated by the same underlying population of cosmic rays

Non-thermal emission

- In addition, non-thermal emission (e.g., radio synchrotron) is sometimes spatially correlated with thermal emission (from, e.g., warm dust)
- ...such is the case for the far-infrared—radio continuum correlation

'Far Infrared-Radio Continuum Correlation'

Yun et al. 2001 ApJ 554, 803 fig 5

'Far Infrared-Radio Continuum Correlation'

Sidebar: origin of FIR-RC?

- correlation between FRC and RC ultimately tied back to massive star formation
- * massive stars \rightarrow UV \rightarrow (dust) \rightarrow IR
- * massive stars \rightarrow supernovae \rightarrow SNRs \rightarrow acceleration of CR e's \rightarrow (B field) \rightarrow synchrotron

FIR-y-ray Correlation?

- * SNR accelerate CR p's (and heavier ions)
 - * there should exist a global scaling b/w FIR and gamma-ray emission from region (Thompson et al. 2007): $L_{GeV} \sim 10^{-5} L_{TIR}$ (assuming 10⁵⁰ erg per SN in CRs)
 - * Such a correlation is now becoming evident

Fermi collab

Fig. 1. Gamma-ray luminosity (0.1-100 GeV) versus total IR luminosity (8-1000 μ m).

Cosmic Rays: What are they good for?

Because CRs are charged, they respond to ISM magnetic fields

⇒ we cannot do CR astronomy (except maybe at highest energies)

• Scatter most strongly on magnetic field inhomogeneities of same scale as their *gyro radius*

⇒ CRs execute a random walk through turbulent ISM magnetic field structure

'Gyroradius' = 'Larmor Radius'

$r_{gyro} \simeq 1.1 \ x \ 10^{-6} \ pc \ (p_{perp}/GeV) \ (B/\mu G) \ 1/Z$

$rigidity \equiv \frac{pc}{Ze} \approx \frac{E}{Ze}$

Cosmic Rays: What are they good for?

- Q: Where do they come from?
- A: accelerated in astrophysical shocks (1st order Fermi acceleration in converging flows), primarily shocks from SN explosions (also stellar winds, etc, also 2nd order acceleration on ISM turbulence)
- Here 1st order ('Fermi-I') means that the acceleration rate is $\propto v/c$ and 2nd order ('Fermi-II') means that the rate is $\propto (v/c)^2$ where v is a characteristic velocity
- Thus 1st order Fermi acceleration is usually much faster than 2nd
 order

Fermi-II (slow)

Fermi-I (fast)

Cosmic Rays:

- Energetic match to power available from SNe
- $L_{CR} \sim 10^{-3} L_{light}$
- Q: why energy density in different ISM components ~the same?:

 $u_{CR} \sim u_{ISRF} \sim u_{turb} \sim u_{therm} \sim 1 \text{ eV cm}^{-3}$

- * A: because long CR escape/energy loss times, >10⁷ years
- * $u_{CR} \sim L_{CR} t / V_{CR}$
- * $t_{CR} \sim Min[t_{esc}, t_{loss}]$
- * $t_{esc} \sim 0.1 t_{loss}$ in MW
- * $L_{CR} \sim SFR / (100 M_{Sun} / CCSN) \times 0.1$

 $\sim 3 \times 10^{40} \, \text{erg/s}$

- VCR ~ 2 Pi 2 kpc (8 kpc)² ~ 2 10⁶⁷ cm³
- $u_{CR} \sim L_{CR} t / V_{CR}$

~3 10⁴⁰ erg/s 3 10⁷ year/(2 10⁶⁷ cm³) ~1.5 eV cm⁻³

Cosmic Rays:

- CR transport in Gal disk = random walk
- * CRs effectively diffuse with λ_{CR} ~pc scattering length
- As CRs scatter on B field they exchange momentum with the B field

⇒ they exert an effective pressure to the gas into which the B field is "frozen in"

Cosmic Rays:

- Can make sense of the analogue of an "Eddington limit" in CRs (Socrates et al. 2008)
- * Momentum flux imparted by CRs, \dot{P}_{CR} , can be significantly enhanced because of the large effective optical depth they experience
- * $\dot{P}_{CR} \sim \tau_{CR} L_{CR}$; τ_{CR} : cosmic ray optical depth
- * $\tau_{CR} \sim R / \lambda_{CR} \sim 1000 \text{ pc} / 1 \text{ pc} \sim 10^3$;

 $[\lambda_{CR} : N.B. CR \text{ mean free path } \lambda_{CR} \gg r_{gyro}]$

 $\Rightarrow \dot{P}_{CR} \sim 10^3 \text{ x } 10^{-3} \text{ L}_{\text{light}} \sim \text{L}_{\text{light}}$

J^{S} J^{S

 $10^3 \times 10^{-3} L_{\text{light}} \sim L_{\text{light}}$

Cosmic Rays:

- * CRs effectively behave as a relativistic fluid with adiabatic index $\gamma = 4/3$
- adiabatic losses are smaller than for non-rel fluid in an expanding outflow

⇒ CRs become progressively more important the more a wind expands

Where do UHE CRs come from? 'Hillas Criterion'

- in any accelerator where the cosmic rays are magnetically confined by a field of characteristic amplitude B, their gyro- radius has to be smaller than the size of the system L:
- * i.e., $r_{gyro} < L \Rightarrow E < Z e c B L$ (very generous upper limit)
- * More realistically: $c \rightarrow v$, where v is a characteristic velocity
- * E < Z e v B L

Figure 3: Hillas plot showing the maximum energy achievable in various astrophysical source of given characteristic size and magnetic field amplitude (credit: F. Aharonian).