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Part 0: Preliminaries



Energy Scales
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Continuum Emission 

Processes from Cosmic Rays
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‘Hadronic’ emission:

pp ➝ stuff
pγ ➝ stuff



‘Hadronic’ emission:

pp ➝ stuff
pγ ➝ stuff

This will b
e discussed in the next lecture



Part I: Cosmic Rays:

What are they good for?
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Victor Hess 2012

…the beginnings of astroparticle physics



• Hess ascended to a height of a few km in a balloon (without 
oxygen!) carrying a gold-leaf electroscope

• In light of the recently-detected phenomenon of radioactivity, he 
anticipated that as he moved further from terrestrial sources of 
radioactivity and the ionisation they produce, the charge on the 
electroscope would decline

• Instead, he found the opposite: the charge increased with altitude; 
there seemed to be a source of ionising ‘radiation’ coming from 
space

• …we are now stuck with the terminology of cosmic ‘rays’
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Victor Hess



• Q: What are they?

• A: non-thermal, charged particle populations; 
dominantly protons and heavier ions and electrons

• low energy CRs accelerated in the Sun

• Sun’s magnetic activity affects flux we detect
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Cosmic Rays:

What are they good for?
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Cosmic Ray Spectrum: Features

❖ Almost featureless (slightly broken) POWER LAW ~E-2.7 
over 10+ decades in energy / 33+ decades in flux 

❖ Low energy turn-over: solar modulation

❖ Knee

❖ Ankle

❖ High energy turn-over: GZK “cut-off” (?)
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Spallation/Confinement: 

Energy-dependence of 2ndary/primary CR nuclei 

❖ Abundance ratio: B/C ∝ E-0.6

❖ Observed spectrum:

❖   φ(E) = dN/dE ∝ E-2.7

❖ Interpretation:

❖ Propagation depends on E

❖  Confinement time: τ(E) ∝ E-0.6…but why this exponent? Expect ∝ 
E-0.3 (for Kolmogorov spectrum of turbulence)

❖ Implication: Injection spectrum Q(E) ∝ E-2.1 …this is consonant with 
expectations for astrophysical shock acceleration

16
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CR detection

• Above ~1014 eV, we cannot launch into space detectors  
with sufficiently large areas to detect the rapidly 
declining CR flux

• Instead we have to rely on detecting secondary and 
tertiary particles initiated in air showers by the collision 
of the primary cosmic ray high in this atmosphere
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The Cosmic Ray Air Shower



E3-Weighted Cosmic Ray 
Spectrum 
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Why are CRs of astrophysical interest?
• provide energy density/pressure equivalent to other ISM phases

⇒ help to support the scale height of the gaseous disk

• dominate heating and ionisation of H2

⇒ maintain temp of H2 and ensure it is coupled to magnetic 
fields

⇒ affects star formation

• probably help to launch galactic outflows

• mutagenic effect on terrestrial life
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Aside: particles first discovered in/as comic rays:

• Positron – 1932 by Anderson (shared 1936 Nobel Prize with 
Victor Hess)

• Muon – 1936 by Anderson and Nedermeyer
• Pion – 1947 by Powell and co-workers (Nobel Prize 1950)
• Kaon – 1947 by Rochester and Butler
• CRs interaction are even today detected at centre-of-mass 

energies (up to ~PeV) many orders of magnitude higher 
than available in collider experiments (LHC: ~14 TeV)
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• Cosmic rays can be measured locally and their presence 
throughout the Galactic disk can be inferred from its 
gamma-ray emission 

• Similarly, we know from gamma-ray observations that 
there are diffuse cosmic ray populations suffusing the 
disks of external galaxies (local group, nearby 
starbursts)

27

Cosmic Rays:

What are they good for?



The Galactic Plane as seen by Fermi



• The non-thermal emission from astrophysical objects 
tends to hidden by the very bright thermal emission by 
stars and dust in the IR - optical - UV band

• …but if we go to higher or lower photon wavelengths 
outside these bands, non-thermal emission can become 
evident
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A general point about non-thermal emission



http://www-zeuthen.desy.de/astro-workshop/vortraege/donnerstag/puehlhofer_zeuthen.pdf

(Spectral Energy Distribution)

radio IR visible X-ray gamma-raymicrowave

http://www-zeuthen.desy.de/astro-workshop/vortraege/donnerstag/puehlhofer_zeuthen.pdf


• Surprisingly, astrophysical photons with very different 
wavelengths can share the same morphology
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Non-thermal emission



32

3 x 10-6 eV

2 x 10-3 eV

107 eV



• Surprisingly, astrophysical photons with very different 
wavelengths can share the same morphology

• This reflects the fact that they are initiated by the same 
underlying population of cosmic rays

33

Non-thermal emission



• In addition, non-thermal emission (e.g., radio 
synchrotron) is sometimes spatially correlated with 
thermal emission (from, e.g., warm dust)

• …such is the case for the far-infrared—radio continuum 
correlation

34

Non-thermal emission



‘Far Infrared-Radio Continuum Correlation’
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‘Far Infrared-Radio Continuum Correlation’
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Each point is an individual galaxy



Sidebar: origin of FIR-RC?

❖ correlation between FRC and RC ultimately tied back to 
massive star formation

❖ massive stars → UV → (dust) → IR

❖ massive stars → supernovae → SNRs → acceleration of 
CR e’s → (B field) → synchrotron
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FIR-γ-ray Correlation?

❖ SNR accelerate CR p’s (and heavier ions)

❖ there should exist a global scaling b/w FIR and 
gamma-ray emission from region (Thompson et al. 
2007):  LGeV ~ 10-5 LTIR (assuming 1050 erg per SN 
in CRs)

❖ Such a correlation is now becoming evident
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Fermi collab



• Because CRs are charged, they respond to ISM magnetic 
fields 

⇒ we cannot do CR astronomy (except maybe at 
highest energies)

• Scatter most strongly on magnetic field inhomogeneities 
of same scale as their gyro radius

⇒ CRs execute a random walk through turbulent ISM 
magnetic field structure

40

Cosmic Rays:

What are they good for?



‘Gyroradius’ = ‘Larmor Radius’
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• Q: Where do they come from?

• A: accelerated in astrophysical shocks (1st order Fermi 
acceleration in converging flows), primarily shocks from SN 
explosions (also stellar winds, etc, also 2nd order acceleration on 
ISM turbulence)

• Here 1st order (‘Fermi-I’) means that the acceleration rate is  v/c 
and 2nd order (‘Fermi-II’) means that the rate is  (v/c)2 where v 
is a characteristic velocity

• Thus 1st order Fermi acceleration is usually much faster than 2nd 
order

∝
∝
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Cosmic Rays:

What are they good for?



Fermi-II (slow)



Fermi-I (fast)



• Energetic match to power available from SNe

• LCR ~ 10-3 Llight

• Q: why energy density in different ISM components ~the same?:

            uCR ~ uISRF ~ uturb ~ utherm ~ 1 eV cm-3  

❖ A: because long CR escape/energy loss times, >107 years

❖ uCR ~ LCR t/VCR

❖ tCR ~ Min[tesc,tloss]

❖ tesc ~ 0.1 tloss in MW 

❖ LCR ~ SFR/(100 MSun/CCSN) x 0.1 

 ~ 3x1040 erg/s
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Cosmic Rays:



• VCR ~ 2 Pi 2 kpc (8 kpc)2 ~ 2 1067 cm3

• uCR ~ LCR t/VCR

              ~3 1040 erg/s  3 107 year/(2 1067 cm3)

         ~1.5 eV cm-3
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Cosmic Rays:



❖ CR transport in Gal disk = random walk

❖ CRs effectively diffuse with λCR~pc scattering length

❖ As CRs scatter on B field they exchange momentum 
with the B field

⇒ they exert an effective pressure to the gas into 
which the B field is “frozen in”

47

Cosmic Rays:



❖ Can make sense of the analogue of an “Eddington limit” in CRs 
(Socrates et al. 2008)

❖ Momentum flux imparted by CRs, ,  can be significantly enhanced 
because of the large effective optical depth they experience

❖  ~ 𝛕CR LCR    ;    𝛕CR : cosmic ray optical depth

❖ 𝛕CR ~ R/λCR ~ 1000 pc/1 pc ~ 103 ; 

                                          [λCR : N.B. CR mean free path λCR ≫ rgyro]

⇒  ~ 103 x 10-3 Llight ~ Llight

·PCR

·PCR

·PCR

48

Cosmic Rays:
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Cosmic Rays:

Momentum feedback fro
m CRs can be as 

important as that fro
m radiation because 

CRs do NOT fre
e stream



Cosmic Rays:

❖ CRs effectively behave as a relativistic fluid with 
adiabatic index 𝛾 = 4/3

❖ adiabatic losses are smaller than for non-rel fluid in an 
expanding outflow

⇒ CRs become progressively more important the 
more a wind expands 
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Where do UHE CRs come from?

'Hillas Criterion’

❖ in any accelerator where the cosmic rays are 
magnetically confined by a field of characteristic 
amplitude B, their gyro- radius has to be smaller than 
the size of the system L: 

❖ i.e., rgyro < L ⇒ E < Z e c B L (very generous upper limit)

❖ More realistically: c → v  , where v is a characteristic 
velocity

❖ E < Z e v B L 
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