The Standard Model of
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Global Symmetries and mass terms in
QED

We can rewrite the QED lagrangian that includes e, u, 7, as
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If we neglect the last term (the mass term), the lagrangian is invariant under a
global U(3) symmetry group transformation:
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Where U is an U(3) matrix. Once one includes the mass term, this symmetry
group is broken to U(1)3:

e - el%e i — %y, T — eldrg
This is called family lepton number conservation, and we will see that is also
present in the Standard Model.




Symmetries of SM Lagrangian (so far)

Without the Yukawa terms, the SM Lagrangian is invariant under the following
symmetry group:
U(3)°

This is because we can rotate each fermion field (of 3 families) independently.
The SM Lagrangian without the yukawa terms is also CP invariant.

All these symmetries will be (partially) broken b the yukawa couplings.




Yukawa terms: lepton sector

ﬁ = LLiELL + EH?:EER (4156}

The ficlds Ly, and ep arc not just an SU(2);, doublet and singlet respectively, they are also in a 3
representation of 2 a (approximate) global symmetry groups, U(3),,, U(3).. As the operator 1D is
the identity in flavour space, it is trivial to see that this part of the lagrangian is invariant under
such symmetry group.

If we want to add mass terms for the lepton, however, we will end up breaking such symmetry.
Now, the mass terms must still come from gauge invariant terms, and need to be the result of
symmetry breaking. We need to build an SU(2),, x U(1)y invariant term, and it needs to include
the field Lj, and the field ep. To make it SU(2),, invariant, we need another SU(2),, doublet to
contract the L doublet. This could be the higes doublet ®. However, we also need such term to
be a singlet under U(1)y. This would happen only if the higgs doublet would have a specific values
of Y, equal to Y; — E.. Luckily, the value of Yy takes exactly this value! So we can add to the

lagrangian a term

—y.f:;-f;L?t-ER,j@ + h.c. (4.157)




Yukawa terms: lepton sector

Unlike what we have done so far, where all terms where coming from covariant derivatives, this
term is something that we add add hoc, without following the "minimal coupling” principle, but
still respecting the gange symmetry of the lagrangian. In the unitary gange, where the goldstone
bosons decouple, this will take the form

v+ h

_yé‘jEL?fER:jW —+ h.c. (4158}
giving a mass matrix
. L v
M;; = Y%i /5 (4.159)

The matrix yé‘,'_, is not nccessarily an hermitian matrix, and is complex in general. It multiplies
different ficlds on the 2 sides. To diagonalise this matrix, we need to rotate separately the left and
right ficlds. We start by noting that

() (4.160)
is hermitian, and can be diagonalised by a transformation SU(3),,, :

yh (it = U.D2U} (4.161)




Yukawa terms: lepton sector

Similarly,

(wi)Tul; (4.162)

is also hermitian, and can be diagonalised by a transformation SU(3).,,:
(5 'yl = W.D2W] (4.163)

Note that the diagonal matrix D, is the same in both cases, as the eigenvalues of the 2 prod-
ucts are the same on both cases. If D, has only positive eigenvalues, it can be shown that these

decompositions are unique, and that
L f
y~ = UDW, (4.164)
The matrices U, W,j will get reabsorbed by the left and right Havour transformations, leaving the
diagonal mass matrix
v

M¢ = De— 4.165
7 (4.165)




Yukawa terms: lepton sector

All other terms in the lagrangian are invariant separately under both transformations, so no trace
of such transformation remains after it is done. So the parameters in U,., W, are not observable, and
the yukawa lepton sector brings us 3 additional parameters only, the masses me, my,, m,.

The original symmetry group U(3),, x U(3) g is broken. If the masses were all degenerate, the
group would break to U(3), xU(3)g — U(3)y = U(1), x SU(3)y as we have scen previously. Given
that the masses are not degenerate, SU(3)y breaks to the diagonal subgroup

UB), xU@B)r = U(l)e xU(1), x U(1), (4.166)

The symmetry groups U(1);,l = e, p, 7 are called lepton family number conservation, that are exact
in the SM. The fact that the lagrangian has an exact global symmetry under these groups implies that
the number of e, g, 7 leptons, N, N, N, is scparately conserved in each interaction. A subgroup of
such group is U(1)y,, called lepton nmumber conservation, that implies the conservation of the total

lepton number Ny, = N, + N, + N




Yukawa terms: quark sector

We can try to apply the same method to give mass to quarks. this time, the difference will be that
both up and down quarks need to get a mass. for down quarks, once again the value of Yo — Yy = —é

is the same as before, and we can still couple it to the higgs doublet
—y%QL,idH’j‘I’ + h.c. (4167}

In the case of up quarks, however, Y — Y, = % We might think that we are in trouble, but luckily
we can use the hermitian conjugate. Note that, to get a gauge invariant term, now the SU(2),,
contraction needs to be different from usunal:

~Yij QL,ialR,j E“bi{ + h.c. (4.168)

where we made explicit the SU(2),, indices a, b.

We can operate in the same way as before, obtaining the decompositions

y" = UuD W} (4.169)
yt = UyD W] (4.170)




Yukawa terms: quark sector

There is only one problem. In the case of quarks, the symmetry group is
U3)g xU(3)u x U(3)a (4.171)

So, while we are free to operate separately different rotations W, Wy on the right handed fields
g, dp, and keeping the rest of the lagrangian invariant, operating different transformations U, Uy
on the 2 components of the left handed fields will affect some terms of the other parts of the
lagrangian. We need to work in the mass eigenstats basis, so we will proceed anyway. We get the

mass terms as with leptons:
(4.172)

M4 — p,- (4.173)




Yukawa terms: quark sector

By applying the U, U, transtormation on left handed fields, we will get a factor

Verkm = UlUy (4.174)

in any term of the lagrangian that was contracting a left handed u-family quark with a left handed
d-tamily quark. There is only one such term in the lagranian, the one giving the interaction with
the W boson. This allows the weak interaction to change a quark of a family in a quark of any other
family. Note that while the W interaction vertex now turns into

q I 17 . 9 i
A~ P s APV 4.175
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thus connecting all up quarks with all down quarks, the interaction vertex with both the photon

—1

and the Z boson remains flavour-diagonal, as they connect only up quark with up quarks, and down
quarks with down quarks. At tree level, flavour is conserved in SM neutral currents. At loop level,

we will see that, thanks to the GIM mechanism.



Yukawa terms: quark sector

Of the original symmetry group, only the subgroup U(1l)g of baryon number conservation
survives. One can check, by counting d.o.f., that for ny families, the CKM matrix has

np(Np — 1)

> (4.176)
real parameters (angles), and
-—1 v —2
(s )2{'”‘“ ) (4.177)

phases. For n; = 3 we obtain 3 angles and 1 phase. The existence of a non-zero phase is a source
of CP violation in the standard model.
The CKM matrix clements are approximately

1—A%/2 A AN (p —in)
Vekm = —A 1-A%/2 AN? (4.178)
AN(1 — p—in) —AN 1




Surviving global symmetries

» The surviving global symmetries are just the Baryon number B, lepton number
L and lepton family numbers L;.

» Note that both B and L are anomalous symmetries, while B — L is anomaly
free



GIM mechanism

» At tree level, neutral currents in the SM have diagonal
couplings, eé, uj, ut, ...

» At loop level, by exchange of 2 W one gets corrections to sinec \WY
neutral currents

»  Unitarity of the V., matrix suppresses the resulting processes

- . . . 70 u
» Example for K? (sd), the diagram is a function of the quark K VP'»
mass in the internal line f(m, ). The c, b, t were not know at
the time of formulation of GIM mechanism. The GIM mechanism

o

and the postulation of the ¢ quark were made to explain the +
rareness of this decay mode. COSBC W
» So let’s consider just a 2x2 Vg, matrix, the Cabibbo Matrix. —
The total amplitude is cr COSBC W
S
M = Sinb.CosO.(f(m,) — f(m,)) I—(O C Vp,

» The function f is a function that actually depends on mé, and
. m2 . .
that can be expanded in powers of m—z", when this parameter is

small. As a result, the zero order value of the diagram cancels -sin@c W
out, and the result is suppressed by a factor

o

. me —my
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my,




Charm quark prediction

Rareness of K° —» u*u~ explained by formulation of GIM mechanism and
postulation of ¢ quark.

The neutral kaon mixing K° — K° was observed. It appeared that K°, K° were
not mass eigenstates, i.e. single propagating particles, but rather admixtures of
2 different particles with very similar mass but very different lifetime:
1 _ 1 _
Ks=K =—(K°—K%, K, =K, =— (K° + K°
S 1 \/7( ) L 2 \/E( )
M(Ks) =~ M(K,) ~ 498MeV,1(Ks)~0.9 x 10719, 7(K;)~0.5 x 107 7s

The mixture could be of the right size only if m.~1.5GeV, as the GIM mechanism
suppression (ignoring the unknown third generation) was
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CP violation discovery to postulate the
third family

K, and K, had different CP parity. Both particles have negative parity (pseudoscalar
mesons). The eigenvalue of C was different however.

_ 1 o %o _ 1 Zo_ o _ 1 o o
— 1 0 170 — 1 170 0y — 1 0 170
C(Kz)—C<—\/§(K +K)>_—ﬁ(1( +K)_+<—ﬁ(1( +K)>

From the conservation of angular momentum, the decay of a K particle to 2 pions led
to a 2 pion CP = + state, and so it is allowed only for K;

The decay of a K particle to 3 pions led to a 3 pion CP = — state, and so it is allowed
only for K,

mg — 2m,; = 220MeV, mg — 3m,; = 80MeV

More energy available was increasing the “phase space” for the 2 pion decay, thus
helping to explain why K¢ = K; had a shorter lifetime



CP violation discovery to postulate the
third family

Away from the K° production point,
one expects to have only K;

At large distance left
The discovery of K; — mm (1964) led to with pure K, beam
the conclusion of CP violation in the

SM K, — nnrn /
\

This happens because the mass
eigenstate K; and the CP eigenstate
K, are not exactly the same, but

K¢ —nm

Log Intensity

b

Distance from K? production

rather
1
KS = @(1{1 + SKZ)
K, = (K, — €Kq)

1+ &2



CP violation discovery to postulate the
third family

CP violation in the SM could not happen with just 2 families. CP violation requires
the CKM matrix to have an imaginary part, a phase, and we saw that the number
of phases of a CKM matrix for np families is

(np — )(ng — 2)
2

Thus, a third family was required, in order to explain CP violation. This led to the
postulation of the third family(1973).

The first 2 particles of the third family were discovered in 1975 (t) and 1977 (b).

The discovery of B® — B? oscillations (1987) led to the hint that the top quark
was very massive (if its mass would have been smaller, the GIM mechanism would
have made such oscillations too weak to be detected at that time.




FCNC suppression in the SM up sector

In general, in the SM, FCNC in the up sector are very suppressed, because the
smallness of the down quark masses leads to a very efficient cancellation of the

amplitudes via the GIM mechanism:
1 mf—m?

CKM factor X 6r2 m2,
The down quark sector is instead the one where the largest FCNC are expected.
Their size is still small, but not as small as those in the up sector, as the

suppression factor is in this case

2 2
1 mi—m¢

CKM tor X
factor T2 mﬁ,

Flavor signatures for BSM physics that are often looked for are b — suu, b — sy.



