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Higgs Field

» In the Standard Model. EW Symmetry breaking is accomplished by a single
scalar field. This is the minimal requirement to obtain spontaneous symmetry
breaking.

» It is possible to accomplish EW symmetry breaking using scalar sectors that
contain more scalars, for example, the 2 higgs doublet model.

» In the SM, the scalar fields is a singlet of color, a doublet of SU(2);, and it has
hypercharge +1/2



Higgs Potential

In order to develop a nonzero vev, we need to write down the potential for the scalar field and make
it such that the minimum is located at a nonzero value of the field. Due to gauge invariance, the
only gauge invariant combination that can appear in the lagrangian is

P! (1.132)
So the most general potential will be
V(e) = plod! + A(ee)? (1.133)

If 2 = 0 the potential has a minimum for @ = 0 and develops no vev: the theory remains unbroken.
So we need to change the sign of p?. As we like to keep p? positive, let’s add a — sign in front

V(e) = pladl | A(dal)? (1.134)

Now the potential develops a minimum for a nonzero value of ®. Derivating w.r.t € we get
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Higgs Potential

The minimum therefore has to satisfy

Vv
z_q:('b“} = (—_uﬂ + z.xxpn@g] =0 (1.136)
22 ®) =0 (1.137)
p_p
Py = (1.138)

The combination 'I'H'I'E is invariant under gauge transformations. However, we have taken a well
defined value in the previous section for @:

by — % (».[-:) (1.139)
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v? = % (1.140)

We now want to find the higgs mass. We may also want to check the masses of the Goldstone
particles G, GY. For this, we can, as usual, get the mass matrix (a,b = (h,G", G))

52y 2202 00
ab = WI@:@‘, =1 0 00 (1.141)
0 00

So we indeed confirm that all goldstone bosons are massless, and that

mi = 2\? (1.142)




How to derive the mass matrix
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Rewrite the field as ® = <,,+,?+iao>
vz

Rewrite the potential V = —pu?2®dT + A(dP™)2 in terms of G*,G~, h, G° fields

Take the second derivatives
0%V

dadbt’

Get the value of the matrix when the vev of the fields G*,G~, h, G° is zero

a,b=of G*,G7,h,G°




Activity Break

Find the mass matrix and check that it contains the right number of zero
eigenvalues (what does Goldstone Theorem tell us?) and the right value of
the higgs mass




Kinetic Higgs term and EW Symmetry
Breaking

To find the masses of the EW gauge bosons in terms of v, all we need to do is to write the kinetic
term for the new ficld and isolate the mass terms coming from the covariant derivative:

Dy =8, —igWit" — ig Yo B3, (1.103)
S |
=y — igW it — g EHP (1.101)
-1 3 =1 7 -1 1 142
_ O —iggWy —isg By —igg(W, — IWF; (1.105)
_t%g{:wji + iwﬁ aﬂ' + t%gw;i o Eég ‘HF
Liin = Dy DF @ (1.106)
We can group the W12 real fields into complex fields with 1 electric charge as
1
i 1 g2
W, = 7 (W, +iw; (1.107)
We get
a, —itgW? —ilg'n, —iLgw!
D, = SR it 78 5 . ?E_i oy (1.108)
_"‘!'ngp. Ou +iggWy —izg By

Gl
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Kinetic Higgs term and EW Symmetry
Breaking

Now, the mass terms will need to include 2 powers of the gauge fields W, B, and a cocflicient of
dimensions of squared energy, so they cannot contain derivatives. So we can drop the derivative
part. We can also drop all fields inside @, as they will not appear in the mass terms for the gauge

bosons, so
. L1t . 2
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f:W,Zmass - 1 W -1 Wg S rB l-y (4.110)
Y RIW T15gWy =159 By V2
— ( W ) ( W ) (4.111)
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W W
= | eV 0 BugWi ) | /P () 0 B W (4.112)
V2 (g2 1(d)? V2 g2 4(g)?

We can identify already the properly normalised lincar combination of W3, B that will make up the

massive Z boson as:

"By — gW}
7, = Tt (4.113)
9>+ (g')

The orthogonal component, the photon, will instead remain massless

_ gBﬂ—{—gWﬂ‘
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Kinetic Higgs term and EW Symmetry
Breaking

When one has multiple fields, it might not be as casy to identify the mass eigenstates from the
expression. One therefore writes the "mass matrix”, for the fields a, b, as
o

Dadbt

Such mass matrix is always block diagonal, with one block for cach possible value of the clectric

Mg, (4.115)

charge. Neutral scalars, if the CP symmetry is conserved, are also separated into 2 different blocks,
one for CP even (CFP = +) and one for CP odd (CP = —). We can indeed check that, for
a =W, W3 B our mass matrix is

2.2

1 2 2 fo2
0 Lr sy (4.116)

0 ade @)t
4 4

The first coluimn and row refer to a particle of charge () + 41, and is indeed block diagonal. The
remaining 2 x 2 block can be diagonalised, with the eigenvalues giving the values of the masses, and
the relative (normalised) cigenvectors giving the right linear combinations that generate the mass
cigenstates. Note that the definition of the mass matrix antomatically account for the 1/2 factor in
the case of real ficlds. The diagonalised matrix becomes

gﬁ o2

= 0 0
0 (92+(i')2)v2 0 (4.117)
0 0 0




Kinetic Higgs term and EW Symmetry
Breaking

From the mass matrix we can immediately read the mass values:

My = g*u (1.118)
2 2

My, — —V-‘;’;(g)w (4.119)

My =0 (4.120)

Substituting back into the lagragian the expressions for B, W3, one can obtain the couplings
of the fermions to the Z, A gauge bosons. Morcover, the other terms that we have discarded coming
from the kinetic term of the Higgs ficld will also generate interactions between the gange fields and
the higghs field A. We will also get interaction between gauge fields, higgs field and the goldstone
bosons G*, GY. We will need to understand what those term mean and if they are physical. We can
rewrite the covariant derivative for a generie field charged under SU(2); x U(1)y in terms of the

mass cigenstates as

23 2 !
g oy 9T (g)Y g9 (T3 +Y)
Dy = 8y — i (WihtW, ) —i Z, — i S (4.121)
n = O g (W) P+ " Ve+e)? "
273 r 2y
—a, il witwe) WY, oa, (4.122)

V2 9>+ (g)?
where we have identified

Q-=T*+Y (4.123)




Kinetic Higgs term and EW Symmetry
Breaking

!

PR — (4.124)

Va*+(g')?

To change the base from the ”flavour” base to the mass cigenstate base, it is convenient to define

Z cos (), —sinfl, w3
= 4.12
(A) (sin O cosOy ) ( B ) ( 5)

the angle 0,,:

with
g Mw
cos 0y, = — = (4.126)
Vi) Mz
. g’
sinfly, = ————= (4.127)
Vgt (9)?
the coupling to Z can be rewritten in terms of (@ rather than Y
FT = (@)Y = (& + (@)1~ (9)Q (4.128)
- . 9 - .9 : . .
D, = 8, — z% (W;t*’Wp t) — e (T3 — sin® 0,Q)Z, — ieQA, (4.129)
with
q
= 4.1
€= Sn 7 (4.130)
by taking the low energy limit, we can connect g, My with the fermi constant
. 2
Gr _ 9 (4.131)
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Gauge fixing and Propagators for W, Z
and Goldstone bosons

c = —%Aﬁ ((—g#”az (1 %)3"3“)5&” - M“’b) AL %G’i (—0* —eMY) 7 (4.149)

this gives us the propagators of the theory. For the scalars, the gauge fixing term gives them a mass

M2, = EM3 (4.150)
M2, = EM}, (4.151)

As the mass is gauge-dependent, it is clear that such particles must be unphysical. However, for
a generic gauge £ we must include the feynman diagrams that include such unphysical particles as
internal lines, as much as we do for ghosts, to retain gauge invariance. One special exception is, at
tree level, the limit £ — co. In this limit, the particles become infinitely massive and decouple from
the theory, as there is no vertex that is o< €. This is called the unitary gange. With a bit of work,
we can also get the propagator for the W, Z ficlds
—q Ty
i (- 0050 (1.152)

In the unitary gauge, this simplifies to

—i y g
o (g;: - MZ) (4.153)

Similarly, the sums over the external polarizations will now take the form

Ty
St = (gﬂv - 3;2 ) (4.154)




Goldstone Equivalence Theorem

» Goldstone Theorem:

» For a spontaneously broken Global symmetry, number of broken generators =
number of goldstone bosons.

» For a spontaneously broken Gauge (local) symmetry, number of broken generators
= number of gauge bosons that acquire mass

» The number of degrees of freedom is conserved:

» Initial state has n real scalars and m massless vectors (that have 2m degrees of
freedom), n + 2m degrees of freedom

» Final state has n — m real scalars and m massive vectors (that have 3m degrees of
freedom), n — m + 3m = n + 2m degrees of freedom



Goldstone Equivalence Theorem

Figure 21.3. The Goldstone boson equivalence theorem. At high energy,
the amplitude for emission or absorption of a longitudinally polarized massive
gauge boson becomes equal to the amplitude for emission or absorption of
the Goldstone boson that was eaten by the gauge boson.




Top quark decay
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Verify the Goldstone Equivalence theorem for the decay of a very heavy top
quark

Feynman rules to use:

Top-bottom-W interaction i%y,uPL
Top-bottom-G~ interaction lT_m—W Py

Compare the squared matrix elements and verify they match at first order in

myy



Gauge Anomalies in the SM

Fo|SsU@3) | su@)
» Forconvenience, we can take all QL 3 2
fermions to be right handed, by 3 1
replacing the particles with the R |-
relativeantiparticles for any left dp | 3 1
handed fermion representation. I 1 9
This will flip all U(1) charges: L
ep |1 1
U(1) U(1) U(1) U(1)
U(l) U(l) SU[) U(1) SU(2) SU(2) SU(@B) U(Q) SUER) SU(3)

SU(2) SU(2) U(1)
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SU(3) SU(3) SU(2) SU(2) SU(2) SU(3) SU(3) SU(3) grav. grav.




Gauge Anomalies in the SM

There are 10 possible combination, however most of them automatically cancel.
1. SU(3)* cancels as QCD is not chiral
2. SU(2)% cancels as it is a special property of SU(2)

3. Any combination including cither a single SU(3) of SU(2) factor will be proportional to the
trace of a single generator, that always vanishes.

This leaves only 3 non-trivial factors to check. The first one is SU(3)? x U(1):

1 1 2 1
—2(—=)y+ 2 - ) = 4.
2 ( 53 3) ! (4.96)
The second factor is SU(2)? x U(1):
1 1 1
- Y+ = = 4.
5 (3( ﬁ)+2) 0 (4.97)
Finally, the last factor to check out is U(1)%
1.4 2.2 1.4 | 3 1 8 1 1
- P3P 2GR (1P o oS 1= 1.
6 3G +30 3 12 (D= g g 1=0 (498)

Gravitational anomaly: Tr[Y] = -2 (— %) +(—-1) -3 (2 (1) — (3) — (— 1)) =0
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