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Optical Theorem

The S matrix ean be written as

S=1+il (1.1)

This matrix is unitary, so
sst = (1 4in@ ity =1 (1.2)
0=l — 1T i)+ Tl (1.3)

The T matrix is infinite dimensional, with each row for cach set of particles and for each momentium
k. We can relate this to the M matrix by

:_i - 13(2“}454(21’1 Zp? {1.-‘1}

and replacing the sum over the index [ by
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We pget
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Optical Theorem

and so
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We now choose the case i = . The overall delta funetion is not zero, so what is in the brackets must
be zero. We get

dﬁ
—iMy - M- =T] ﬁﬁdﬂﬁxf}imw}"a‘(p{ —pj) (1.9)
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2Im|Mii| = |Mal*d®pips (1.10)

where the sum over all possible § states is assumed.
Now we remind the equation to caleulate a cross section

1

do =
7 2E12E2|'U1 - 1'J'2|

|M|2d 1105 (1.11)
The equation for a (partial) decay width (inverse of decay time) is
- | M|2d (1.12)
dl' = — : :
50 LIPS
We got
Im|Mii| = MT (1.13)
Where we have "assumed” |M|? = |M|%. This is true for scalar particles. We will see that this

relation holds also for other particles. Such particles will have spinor or Lorentz indices in their self
energy, and correctly accounting for them will keep such relation true.




Optical Theorem

and so
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We now choose the case i = . The overall delta funetion is not zero, so what is in the brackets must
be zero. We get
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where the sum over all possible § states is assumed. Phase Space

Now we remind the equation to caleulate a cross section

1

do =
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|M|2d 1105 (1.11)
The equation for a (partial) decay width (inverse of decay time) is
- | M|2d (1.12)
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Im|Mii| = MT (1.13)
Where we have "assumed” |M|? = |M|%. This is true for scalar particles. We will see that this

relation holds also for other particles. Such particles will have spinor or Lorentz indices in their self
energy, and correctly accounting for them will keep such relation true.




Ward ldentity in QED and QCD

When a process contains one or more external photons, the amplitude is
proportional to the external photon polarization, that can be factorized:

M = M,et (k)

The Ward identity tells us that by replacing the polarization vector with the
photon momentum, we get zero

M, kE =0

This tells us that the amplitude for a longitudinally polarised photon is zero for
example.

In QCD, if we check the Ward identity for the process qg — gg we notice that it
is violated.

Indeed one can check that there are unphysical polarizations for which the
amplitude does not cancel.



Optical Theorem violation, BRST
symmetry and ghosts

This leads to a violation of the optical
theorem when considering loop
diagram qgq — qq

This happens due to an issue that
arises when quantising non-abelian \
gauge theories. 2Im --£-3-- =

This is solved by introducing additional
fields (ghosts) and the BRST
symmetry.

(See QCD course for more details)




Running Coupling Constants and Beta
Functions in QED
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We can now solve this differential equation

dov 1 9
{j:_z — g—dlﬂgM
1 q
B u{Mn}
alq”) = 120 oy

The Beta function is positive, so the coupling constant grows going towards larger energy sc
and hits a Landau Pole at very large energy



Running Coupling Constants and Beta
Functions in QCD

Blg) = QM% (—51 1ot %53) (3.220)
- (aif)zm - g)(—z}(z —~ g} (Cz[r} + Ca(G) — Cafr) + %(202((;) - %u;ﬂr)))@-ﬁ?l)
_ —%1‘(3 - %‘) (%cg(r:;} R %ﬂ.;C(r)) (3.222)
_ _% (L;cg(c;; . gnfc:(a—)) (3.223)

Fr an abelian group, C2(G) = 0 and § = 0. FOr a non abelian group, 5(g) < 0 for small n .
For the QCD casc

Cy(G) = N — 3 (3.224)

C(F) — % (3.225)
g' 2

B) = i (11 . gn,r) (3.226)

The Beta function is negative, so the coupling constant grows going towards smaller
energy scales, and hits a Landau Pole at Aycp =~ 330MeV



As the strong coupling constant becomes very large at low energies, perturbative expansion fails.
However, one can get the order of magnitude of the important energy scale Aycp ~ 330MeV

»9\‘ proton = a baryon (B=1)
® 8 % quark = 1/3 of a baryon (B=1/3)




Color Singlets

Quarks confine to form color singlets
Possible ways to form singlets: Standard Hadrons Exotic Hadrons
3®3 :@8
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Symmetry Patterns for Baryons and
Mesons

s=0 n p
s=—1 ¥ »+
q=1
s = -2
= =0
qg=—1 q=10

Pl D
S=0 A~ A 1 1232MeV

A
= s - XX\ISSSM&/
S=-2 \‘X:‘x \m 1530MeV
S=-3 m \1672Mev

KN




Goldstone Theorem

Let @ be a real scalar field in the fundamental repr. of SO(N). a ®? theory invariant under SO(N)
can be written as

1 1 A
L= 50,00"® 5;&-*@ - E(@-'@)E (1.15)

You may notice that the mass term has the wrong sign. No worries! We will see that the theory
still makes perfectly sense. What will happen is a symmetry breaking, and some lields will need
to be rewritten, as some of them will get a nonzero vev, Taking the potential, we find the minima
condition

g_i = —pol pa(ele)el =0 (1.16)
2
Ly i — % (1.17)

Thus we need to have at least one component, of the n-vector that has nonzero vev. Note that we can
take to be just one component without loss of generality, because we can always rotate the vector

by a SO(N) transformation to have all but one components with no vev. This transformation will
define the physical base., Thus

1.2
(@) = (0,..., ’T) (1.18)




Goldstone Theorem

From now on, we are not more allowed to perform a generic SO(N ) rotation, as the system is clearly
not invariant anymore under such transformations. What remains is an SO(N — 1) symumnetry for

the first N — 1 components of . We will call them 'i’, while we will eall p the last field component
of ¢,

b = (b e 1.1
= (@, +p) (1.19)

A
If we rewrite the lagrangian using such fields we get

L - T 1 )
1 o 2

+ E,uz (11'1'11' + (%;}}2)
1 ~4 = 1% 2

oA (ww + (’IP)E) (1.20)
1 Ty W o 1 i 1 2y 2 3

= Ea”'l’a"'l' + 5 W p — E[Eﬁ- Jp~ + O(S7) (1.21)

The field p now has a mass term with the right sign, while the remaining fields are massless and
have ¢ remnant SU(N — 1) symmetry!




Goldstone Theorem
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Goldstone Theorem: If a Lagrangian, invariant under a set of continuus transformations, gets
the symmetry spontancously broken, there is a massless goldstone boson for each broken generator.
How many generators where broken?

N{N—l}_{h’—l}[h’—?}:

N1 1.22
5 5 (1.22)

that is exactly the munber of massless particles remaining in the theory!
PROOF We want to proove that, V continnus symmetries of £ that are not a symmetry of

the minimum, then

av
B a¢uﬁ¢b

() (1.23)

My,
has a zero cigenvalue, The symmetry can be expressed as a infinitesimal tranformation
&% "+ aRPY", o<1 (1.24)
We take ¢ as constant, so a symmetry of £ is a symmetry of V. The invariance of V' means that

V(g") = V(e" + A¢") (1.25)

av « _av 4E
ags DAL (6) = o (@)ak* ¢ =0 (1.26)




Goldstone Theorem

We differentiate the previous relation w.r.t oy:

32'#' T~ av o
Garag DR F )R = 0 (1.27)
we now speily to the point ¢ = ¢y,
a2V e OV
ﬂ{i}uﬂ{i}b(fﬁn}m'% + a—tﬁu(ﬁf’n}ff" =0 (1.28)
EV o o
S (G0 R 65 = Moy R0 =0 (120)

where the second equation is obtained using the fact that the gradient of the potential is zero at the
minima. Now, the number of nonzero components B¢ is equal to the number of broken generators
R, e, generators for which

RA“)C £ () (1.30)
These are all linearly independent components, and as all components of
M, RO (1.31)

arc required to be zero, it follows that the matrix My, needs to have the same number of zero
cigenvalues as the number of broken generators.




Chiral Symmetry of massless QCD

We want to study symmetrics of YM theorics, for example QCD

1w
1 _
L= ZGLG™ | (a,d5)il) | d (1.5)

&

We can rewrite the lagrangian decomposing in left and right handed felds

1+5 1_5 1_|_,.:r.5 1+‘n
*:(( ET)+( ET))m:( 2 )“+( z’r)Qi:f"':""'ﬂr’:‘L e

We get the following lagrangian

T U gy iy,
(i, d,5)il) | d | = (g, dp.5)il) | dg | + (g, dp,5.)id) | dy (1.7)
] SK Hp,

The left and right fclds do not talk to cach other. Such a theory is invariant under the global
svmmetry of the group

U(3), @U(3)g = U(l), @ U(1) g & SU(3)., x SU(3) (1.8)




Chiral Symmetry of massless QCD

The U(1) factors transform all felds of the given helicity and does not act on the fields of the other
helicity. The SU(3) factors apply SU(3) transformations to the fields of the given helicity (thus
mixing up different flavours) and do not act on the fields of the other helicity.

g gL U(1)y, (1.9)
uy, 1y,
d, | =+ UL | d, SU(3). (1.10)
s 51,

The symmetry group can be rewritten as
UB)waU@B)a=Ul)y@U(1)a® SU3)v x SU(3)a (1.11)
U(1)y acts on all quarks with same phase shift
q ey (1.12)

This symmetry is exact and is called U(1) g barion number conservation. The SU(3)y is an SU(3)
transformation acting in the same way for left and right handed components

Q —»UQ (1.13)
Q= |d (1.11)

This symmetry would be exact even with quark masses turned on, as long as they are all degenerate.
So it is broken by quark mass differences, mg — my, 2ms — mg — my,. This (approximate) symmetry
is seen in nature and is called SU(3) . The subgroup with only the w, d quarks is called SU(2)

or isospin synunetry.




Chiral Symmetry of massless QCD

» The SU(3), symmetry gets spontaneously broken by nonperturbative effects
of QCD vacuum

» This means 8 broken generators, so one expects 8 massless goldstone bosons

However quarks are not really massless, they have a small mass, (much)
smaller than Ay¢p

» This means the SU(3),4 symmetry is just an approximate symmetry, and as
such we expect 8 nearly-massless (=very light) goldstone bosons

» These are indeed the mesons of the meson octet!




Chiral Symmetry of massless QCD:
The U(1) problem

» The U(1), symmetry would gets spontaneously broken by nonperturbative
effects of QCD vacuum as well

» This would mean that one would expect an additional light meson, that was
found, but was not light!

» This originated the so called “U(1)” problem

» The solution to the problem is the fact that the U(1), symmetry is a
symmetry of the classical lagrangian, but gets broken by quantum effects,
and therefore is not a symmetry at all.

» As such, the Goldstone theorem does not apply!




