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Standard Model Elementary Particles

Matter: spin %2 fermions

Force carriers: spin 1 gauge bosons and
spin 0 Higgs boson

Spin 1 bosons related to 3 of the 4 forces
of nature: Electromagnetic, Weak, and
Strong forces

Matter (fermions) divided in 2 groups,
based on interactions: leptons and quarks

Leptons do not interact through the
Strong force and exist individually

Quarks interact via the Strong force and
do not exist on their own, but rather form
Hadrons (Baryons and Mesons)

Minimal theory to explain Electroweak and
Strong forces
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LEPTONS

Standard Model of Elementary Particles

three generations of matter

(fermions)

interactions / force carriers
(bosons)
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Standard Model Gauge Group

v

The Gauge Group defines the group under which SM particles will transform under
a gauge transformation

The Gauge Group of the Standard Model is

SU3). x SU(2), x U(1)y

Field G associated to SU(3),

Field W associated to SU(2);

Field B associated to U(1)y

This Gauge symmetry group will get spontaneously broken to
SU3).xU(1)q

Gauge group is product of 3 simple groups, gauge term in the lagrangian will be
the sum of a gauge term for each simple group
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Gauge term for Abelian Group:
Covariant Derivative

We consider a fermion field W with electric charge Q. We will say that W belongs to the Q representation of
U(1)q, and it will transform as

(VTN eieQa(x”)Lp

An arbitrary phase shit that depends on the space-time point is not problematic for P¥ terms, as

Py - Py
The terms that have a problem are the ones involving a derivative. The derivative along a direction n* is
 Y(xH 4+ ent) —P(xH)
n#9,¥ = lim
e—0 €

This is a difference of W at DIFFERENT space-time points, that means the difference of fields that transform
differently under the phase shift, as the first one will acquire a phase a(x* + en*), while the second will acquire
a phafse a(x*). To obtain an object that transforms correctly, we need to define a transport operator that
transforms as

U(y' x) N eieQa(y)U(y, x)e_ieQa(x)
And has the properties
Ulx,x) =11[Ull=1

where the last equation means that U can (should) be takes as a pure phase. Following what we have seen so f
we can see that a good choice can be

U(y, x) = oleQ f;Audl”



Gauge term for Abelian Group:
Covariant Derivative

Using this operator we get that
U(x* + en®, xH)P(xH)

transforms in the same way as
Y(x* + enH)

so we can define
 Y(xH* 4+ ent) — U(x* 4+ en®, x*H)WP(xH)
n”DﬂLP = 11rr(1)

E—

€
C WY(xH 4 enk) — eleQenfAug (i)
= lim

e—0 €
Y(x#) + ent9, ¥ — (1 + ieQentA, )P (xH)

= lim
-0

€
=n#(d, —ieQA,)Y

So

D, =0, —ieQA,




Gauge term for Abelian Group:
Gauge kinetic term

The covariant derivative transforms as
D, » UD, U, U = e~1eQa()

And has the property that
|D,, D, | = —ieF,,

In the abelian case F,, is invariant:
F. - UE,UT =UU'F,, = F,,
In the abelian case, the gauge kinetic term is given by

1
L= _ZFI,WF”V

Expanding it in terms of the field 4,, there are only terms that contain the field
2 times. These terms contribute to the propagator, there are no self-interactions.



Gauge term for Abelian Group:
Feynman rules
The propagator is

_iguv
k2 +ie




Gauge term for non-Abelian Group:
Covariant Derivative

The relevant difference, comparing to the abelian case, is that now U is not just a
phase, but an SU(N) unitary matrix:
U(y,x) = ¢i9 K agecat

This means that we will need multiple Aj fields.

The covariant derivative is also a matrix:
D, =10, — ieQA%t®
Or, by expressing explicitly the matrix indices

Dﬂ,bC = Hbcau — leQAZtgc



Gauge term for non-Abelian Group:
Gauge kinetic term

The main difference comparing to the abelian case is that now F,, is not invariant:
E, - UE,U" #E,

Moreover, F,,, is now a matrix, so we need to adapt out definition for the gauge kinetic term.

The field strength tensor can be rewritten as
Fuy = Eyt®
A contraction of 2 tensors is not invariant, but its trace is:
EF* — UF,, F*UT

Tr|UE,F*UY| = Tr[UTUE,, F*'| = Tr|E,, F*]

Using the expansion, we get

1
Tr|E,F*] = ELF) " Tr[t%"] = > —F&FY Sap

Each a component is associated to a different gauge boson, so an SU(N) group will have N2 — 1 gauge bosons, as
much as the generators.

1 uv 1 a KV
L= —ETT'[F#VF ] = _ZPI'»WFQ

Expanding a single component, we get:
F;ﬁ/ = auAg - avAﬁ + gfabcAﬁAfl



Gauge term for non-Abelian Group:
Feynman rules

The propagator is

_iguv

k? + ic
However, there are also terms that
include 3 and 4 fields in the
contraction of F,,,F*': these terms
generate gauge fields self
interactions:

5ab
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Chiral Fermions

Free Fermion Lagrangian is
L=Yid,y*¥ —mPYy

We can decompose fermions in left handed and right handed fermions

1+7y° 1—y°
e e L e LR R

1+y° 1—y°
l'IJR= l'IJ=PRLIJ,1'IJL= 2 l‘I’J=PLl'IJ

2
P are projectors: Pg, = Pg;, PrP, = P .Pg = 0.
We can rewrite the lagrangian using ¥ = W, + ¥, = Py¥; + P,¥;

L =Wrid,y*Wp + Wi, y*¥, — m(Pr¥, + P, ¥r)

If m = 0 the two fields decouple and become independent. Thus they can be 2
different fields belonging to different representations.




Standard Model as a Chiral Theory

» 5 chiral fermion fields

» Quarks always belong to the FSU(3) | SU(2) | U(1)
fundamental SU(3), representation Qn | 3 2 1/6

» Leptons are always singlet under g | 3 1 2/3
SU(3), dp |3 1 —1/3

» Left handed fields always below to Ly |1 2 —1/2
the fundamental SU(2),, en | 1 1 1

representation

> Rjght handed fields are always Table 1: Standard Model Fermion field content
singlets under SU(2),,

» There is not right handed neutrino
field (it would be singlet under all
simple subgroups)

» Having L,R particle in different
representations means that the P:x - —x,t—>t, LR
parity symmetry P is broken



Standard Model Fermion Lagrangian

The lagrangian is simply
YiD,yH¥

Where ¥ is each of the 5 chiral fields, summed over all group indices, where D,

needs to be written depending on the representation of the field W. For
example, for ey, that is only charged under U(1)y,

DH. = aﬂ — lngB“_
For L,, that is charged under both U(1)y and SU(2),,

D, =19, — igyQB,I — ig W,t®



Fermion Lagrangian Feynman rules

>
p

The term with only 2 ¥ fields gives, as
usual, the propagator:

i(y k" +m)

k? —m?2 + is
The terms with 2 ¥ fields plus one

gauge boson field gives fermion-gauge
bosons interactions

igyHt




QED/QCD processes/exercises

Some examples




ete” > utu

» Write matrix element

» Get squared matrix element
averaged over initial spins and
summed over final spins

» Find the cross section in the c.o.m.
frame




ete” s ete”

» Write matrix element

» Get squared matrix element
averaged over initial spins and
summed over final spins

» Find the cross section in the c.o.m.
frame e —P1 Pi_—o o—Pi

P2 P2 P2




I =17

qq = q q

» Write matrix element. Hint: can be
obtained by analogy from QED

» Get squared matrix element
averaged over initial spins/colors
and summed over final
spins/colors. Hint: can be obtained
by analogy from QED

]

» Find the cross section in the c.o.m. p
frame




ete”™ - yy

Write matrix element

Check the ward identity for this

process
) Py, 57
Get squared matrix element

averaged over initial spins and
summed over final polarizations

Find the cross section in the c.o.m.
frame

Piy 55




qq = 99

» Write matrix element. Note: there

is an additional diagram comparing
to QED

» Check the ward identity for this
process
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