The Standard Model of Particle Physics
 Lecture 1

Standard Model Elementary Particles

- Matter: spin $1 / 2$ fermions
- Force carriers: spin 1 gauge bosons and spin 0 Higgs boson
- Spin 1 bosons related to 3 of the 4 forces of nature: Electromagnetic, Weak, and Strong forces
- Matter (fermions) divided in 2 groups, based on interactions: leptons and quarks
- Leptons do not interact through the Strong force and exist individually
- Quarks interact via the Strong force and do not exist on their own, but rather form Hadrons (Baryons and Mesons)
- Minimal theory to explain Electroweak and Strong forces

Standard Model of Elementary Particles

Standard Model Lagrangian

Standard Model Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\text {gauge }}+
$$

Standard Model Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {fermion }}+
$$

Standard Model Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {fermion }}+\mathcal{L}_{\text {higgs }}+
$$

Standard Model Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {fermion }}+\mathcal{L}_{\text {higgs }}+\mathcal{L}_{\text {potential }}+
$$

Standard Model Lagrangian

$$
\mathcal{L}=\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {fermion }}+\mathcal{L}_{\text {higgs }}+\mathcal{L}_{\text {potential }}+\mathcal{L}_{\text {yukawa }}
$$

Standard Model Gauge Group

- The Gauge Group defines the group under which SM particles will transform under a gauge transformation
- The Gauge Group of the Standard Model is
- $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$
- Field G associated to $S U(3)_{c}$
- Field W associated to $S U(2)_{L}$
- Field B associated to $U(1)_{Y}$
- This Gauge symmetry group will get spontaneously broken to
- $S U(3)_{c} \times U(1)_{Q}$
- Gauge group is product of 3 simple groups, gauge term in the lagrangian will be the sum of a gauge term for each simple group

Gauge term for Abelian Group: Covariant Derivative

We consider a fermion field Ψ with electric charge Q. We will say that Ψ belongs to the Q representation of $U(1)_{Q}$, and it will transform as

$$
\Psi \rightarrow e^{i e Q \alpha\left(x^{\mu}\right)} \Psi
$$

An arbitrary phase shit that depends on the space-time point is not problematic for $\bar{\Psi} \Psi$ terms, as

$$
\bar{\Psi} \Psi \rightarrow \bar{\Psi} \Psi
$$

The terms that have a problem are the ones involving a derivative. The derivative along a direction n^{μ} is

$$
n^{\mu} \partial_{\mu} \Psi=\lim _{\epsilon \rightarrow 0} \frac{\Psi\left(x^{\mu}+\epsilon n^{\mu}\right)-\Psi\left(x^{\mu}\right)}{\epsilon}
$$

This is a difference of Ψ at DIFFERENT space-time points, that means the difference of fields that transform differently under the phase shift, as the first one will acquire a phase $\alpha\left(x^{\mu}+\epsilon n^{\mu}\right)$, while the second will acquire a phase $\alpha\left(x^{\mu}\right)$. To obtain an object that transforms correctly, we need to define a transport operator that transforms as

$$
U(y, x) \rightarrow e^{i e Q \alpha(y)} U(y, x) e^{-i e Q \alpha(x)}
$$

And has the properties

$$
U(x, x)=1,\|U\|=1
$$

where the last equation means that U can (should) be takes as a pure phase. Following what we haye seen so far, we can see that a good choice can be

$$
U(y, x)=e^{i e Q \int_{x}^{y} A_{\mu} d l^{\mu}}
$$

Gauge term for Abelian Group: Covariant Derivative

Using this operator we get that

$$
U\left(x^{\mu}+\epsilon n^{\mu}, x^{\mu}\right) \Psi\left(x^{\mu}\right)
$$

transforms in the same way as

$$
\Psi\left(x^{\mu}+\epsilon n^{\mu}\right)
$$

so we can define

$$
\begin{aligned}
& n^{\mu} D_{\mu} \Psi=\lim _{\epsilon \rightarrow 0} \frac{\Psi\left(x^{\mu}+\epsilon n^{\mu}\right)-U\left(x^{\mu}+\epsilon n^{\mu}, x^{\mu}\right) \Psi\left(x^{\mu}\right)}{\epsilon} \\
&=\lim _{\epsilon \rightarrow 0} \frac{\Psi\left(x^{\mu}+\epsilon n^{\mu}\right)-e^{i e \varrho \epsilon n^{\mu} A_{\mu}} \Psi\left(x^{\mu}\right)}{\epsilon} \\
&=\lim _{\epsilon \rightarrow 0} \frac{\Psi\left(x^{\mu}\right)+\epsilon n^{\mu} \partial_{\mu} \Psi-\left(1+i e Q \epsilon n^{\mu} A_{\mu}\right) \Psi\left(x^{\mu}\right)}{\epsilon} \\
&=n^{\mu}\left(\partial_{\mu}-i e Q A_{\mu}\right) \Psi
\end{aligned}
$$

So

$$
D_{\mu}=\partial_{\mu}-i e Q A_{\mu}
$$

Gauge term for Abelian Group: Gauge kinetic term

The covariant derivative transforms as

$$
D_{\mu} \rightarrow U D_{\mu} U^{\dagger}, U=e^{-i e Q \alpha(x)}
$$

And has the property that

$$
\left[D_{\mu}, D_{\nu}\right]=-i e F_{\mu v}
$$

In the abelian case $F_{\mu \nu}$ is invariant:

$$
F_{\mu \nu} \rightarrow U F_{\mu \nu} U^{\dagger}=U U^{\dagger} F_{\mu \nu}=F_{\mu \nu}
$$

In the abelian case, the gauge kinetic term is given by

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

Expanding it in terms of the field A_{μ}, there are only terms that contain the field 2 times. These terms contribute to the propagator, there are no self-interactions.

Gauge term for Abelian Group: Feynman rules

The propagator is

$$
\frac{-i g_{\mu \nu}}{k^{2}+i \varepsilon}
$$

Gauge term for non-Abelian Group: Covariant Derivative

The relevant difference, comparing to the abelian case, is that now U is not just a phase, but an $\operatorname{SU}(N)$ unitary matrix:

$$
U(y, x)=e^{i g \int_{x}^{y} A_{\mu}^{a} t^{a} d l^{\mu}}
$$

This means that we will need multiple A_{μ}^{a} fields.
The covariant derivative is also a matrix:

$$
D_{\mu}=\mathbb{I} \partial_{\mu}-i e Q A_{\mu}^{a} t^{a}
$$

Or, by expressing explicitly the matrix indices

$$
D_{\mu, b c}=\mathbb{I}_{b c} \partial_{\mu}-i e Q A_{\mu}^{a} t_{b c}^{a}
$$

Gauge term for non-Abelian Group: Gauge kinetic term

The main difference comparing to the abelian case is that now $F_{\mu \nu}$ is not invariant:

$$
F_{\mu \nu} \rightarrow U F_{\mu \nu} U^{\dagger} \neq F_{\mu \nu}
$$

Moreover, $F_{\mu \nu}$ is now a matrix, so we need to adapt out definition for the gauge kinetic term. The field strength tensor can be rewritten as

$$
F_{\mu \nu}=F_{\mu \nu}^{a} t^{a}
$$

A contraction of 2 tensors is not invariant, but its trace is:

$$
\begin{gathered}
F_{\mu \nu} F^{\mu \nu} \rightarrow U F_{\mu \nu} F^{\mu \nu} U^{\dagger} \\
\operatorname{Tr}\left[U F_{\mu \nu} F^{\mu \nu} U^{\dagger}\right]=\operatorname{Tr}\left[U^{\dagger} U F_{\mu \nu} F^{\mu \nu}\right]=\operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right]
\end{gathered}
$$

Using the expansion, we get

$$
\operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right]=F_{\mu \nu}^{a} F_{b}^{\mu v} \operatorname{Tr}\left[t^{a} t^{b}\right]=\frac{1}{2} F_{\mu \nu}^{a} F_{b}^{\mu v} \delta_{a b}
$$

Each a component is associated to a different gauge boson, so an $\operatorname{SU}(N)$ group will have $N^{2}-1$ gauge bosons, as much as the generators.

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left[F_{\mu \nu} F^{\mu \nu}\right]=-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}
$$

Expanding a single component, we get:

$$
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f_{a b c} A_{\mu}^{b} A_{\nu}^{c}
$$

Gauge term for non-Abelian Group: Feynman rules

The propagator is

$$
\frac{-i g_{\mu \nu}}{k^{2}+i \varepsilon} \delta_{a b}
$$

However, there are also terms that include 3 and 4 fields in the contraction of $F_{\mu \nu} F^{\mu v}$: these terms generate gauge fields self interactions:
$a, \mu \quad b, v$ $\cdots \infty \infty$ k

Break

Chiral Fermions

Free Fermion Lagrangian is

$$
\mathcal{L}=\bar{\Psi} i \partial_{\mu} \gamma^{\mu} \Psi-m \bar{\Psi} \Psi
$$

We can decompose fermions in left handed and right handed fermions

$$
\begin{gathered}
\Psi=\left(\frac{1+\gamma^{5}}{2}\right) \Psi+\left(\frac{1-\gamma^{5}}{2}\right) \Psi=\Psi_{R}+\Psi_{L} \\
\Psi_{R}=\left(\frac{1+\gamma^{5}}{2}\right) \Psi=P_{R} \Psi, \Psi_{L}=\left(\frac{1-\gamma^{5}}{2}\right) \Psi=P_{L} \Psi
\end{gathered}
$$

$P_{R, L}$ are projectors: $P_{R, L}^{2}=P_{R, L}, P_{R} P_{L}=P_{L} P_{R}=0$.
We can rewrite the lagrangian using $\Psi=\Psi_{R}+\Psi_{L}=P_{R} \Psi_{R}+P_{L} \Psi_{L}$

$$
\mathcal{L}=\bar{\Psi}_{R} i \partial_{\mu} \gamma^{\mu} \Psi_{R}+\bar{\Psi}_{L} i \partial_{\mu} \gamma^{\mu} \Psi_{L}-m\left(\bar{\Psi}_{R} \Psi_{L}+\bar{\Psi}_{L} \Psi_{R}\right)
$$

If $m=0$ the two fields decouple and become independent. Thus they can be 2 different fields belonging to different representations.

Standard Model as a Chiral Theory

- 5 chiral fermion fields
- Quarks always belong to the fundamental $S U(3)_{c}$ representation
- Leptons are always singlet under $S U(3)_{c}$
- Left handed fields always below to the fundamental $S U(2)_{L}$ representation
- Right handed fields are always singlets under $S U(2)_{L}$
- There is not right handed neutrino field (it would be singlet under all simple subgroups)
- Having L,R particle in different representations means that the parity symmetry P is broken

F	$S U(3)$	$S U(2)$	$U(1)$
Q_{L}	3	2	$1 / 6$
u_{R}	3	1	$2 / 3$
d_{R}	3	1	$-1 / 3$
L_{L}	1	2	$-1 / 2$
e_{R}	1	1	-1

Table 1: Standard Model Fermion field content

$$
P: x \rightarrow-x, t \rightarrow t, L \leftrightarrow R
$$

Standard Model Fermion Lagrangian

The lagrangian is simply

$$
\bar{\Psi} i D_{\mu} \gamma^{\mu} \Psi
$$

Where Ψ is each of the 5 chiral fields, summed over all group indices, where D_{μ} needs to be written depending on the representation of the field Ψ. For example, for e_{R}, that is only charged under $U(1)_{Y}$,

$$
D_{\mu}=\partial_{\mu}-i g_{Y} Q B_{\mu}
$$

For L_{L}, that is charged under both $U(1)_{Y}$ and $\operatorname{SU}(2)_{L}$,

$$
D_{\mu}=\mathbb{I} \partial_{\mu}-i g_{Y} Q B_{\mu} \mathbb{I}-i g_{L} W_{\mu}^{a} t^{a}
$$

Fermion Lagrangian Feynman rules

The term with only 2Ψ fields gives, as usual, the propagator:

$$
\frac{i\left(\gamma_{\mu} k^{\mu}+m\right)}{k^{2}-m^{2}+i \varepsilon}
$$

The terms with 2Ψ fields plus one gauge boson field gives fermion-gauge bosons interactions
$i g \gamma^{\mu} t^{a}$

QED/QCD processes/exercises

Some examples

$$
e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}
$$

- Write matrix element
- Get squared matrix element averaged over initial spins and summed over final spins
- Find the cross section in the c.o.m. frame

$$
e^{+} e^{-} \rightarrow e^{+} e^{-}
$$

- Write matrix element
- Get squared matrix element averaged over initial spins and summed over final spins
- Find the cross section in the c.o.m. frame

$$
q \bar{q} \rightarrow q^{\prime} \bar{q}^{\prime}
$$

- Write matrix element. Hint: can be obtained by analogy from QED
- Get squared matrix element averaged over initial spins/colors and summed over final spins/colors. Hint: can be obtained by analogy from QED
- Find the cross section in the c.o.m. frame

$$
e^{+} e^{-} \rightarrow \gamma \gamma
$$

- Write matrix element
- Check the ward identity for this process
- Get squared matrix element averaged over initial spins and summed over final polarizations
- Find the cross section in the c.o.m. frame

$$
q \bar{q} \rightarrow g g
$$

- Write matrix element. Note: there is an additional diagram comparing to QED
- Check the ward identity for this process

