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1 Yukawa sector in the SM

So far our model is still pretty simple, in the sense that depends on a very limited number of

parameters: the 3 gauge couplings g1,2,3, the higgs self interaction coupling λ, and the higgs mass

parameter µ2, for a total of 5 parameters. However, we still need to explain all fermion masses, that

will require at least 9 more parameters. We will see that we need to add indeed 13 new parameters.

This will open the discussion about flavour.

1.1 Yukawa Lepton Sector

We go back to the fermion part of the lagrangian. So far, we have only included the kinetic term

with the covariant derivative. this does not include a mass term for the fermions, unfortunately. We

start from leptons, the lagrangian reads1

L = L̄Li /DLL + ēRi /DeR (1.1)

The fields LL and eR are not just an SU(2)L doublet and singlet respectively, they are also in a 3

representation of 2 a (approximate) global symmetry groups, U(3)L, U(3)e. As the operator /D is

the identity in flavour space, it is trivial to see that this part of the lagrangian is invariant under

such symmetry group.

If we want to add mass terms for the lepton, however, we will end up breaking such symmetry.

Now, the mass terms must still come from gauge invariant terms, and need to be the result of

symmetry breaking. We need to build an SU(2)L × U(1)Y invariant term, and it needs to include

the field LL and the field eR. To make it SU(2)L invariant, we need another SU(2)L doublet to

contract the LL doublet. This could be the higgs doublet Φ. However, we also need such term to

be a singlet under U(1)Y . This would happen only if the higgs doublet would have a specific values

of Y , equal to YL − Ee. Luckily, the value of YΦ takes exactly this value! So we can add to the

lagrangian a term

−yLijL̄L,ieR,jΦ + h.c. (1.2)

Unlike what we have done so far, where all terms where coming from covariant derivatives, this

term is something that we add add hoc, without following the ”minimal coupling” principle, but

still respecting the gauge symmetry of the lagrangian. In the unitary gauge, where the goldstone

bosons decouple, this will take the form

−yLij ēL,ieR,j
v + h√

2
+ h.c. (1.3)

1Note that we are neglecting meutrino masses, given that their origin is unknown.
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giving a mass matrix

M e
ij = yLij

v√
2

(1.4)

The matrix yLij is not necessarily an hermitian matrix, and is complex in general. It multiplies

different fields on the 2 sides. To diagonalise this matrix, we need to rotate separately the left and

right fields. We start by noting that

yLij(y
L
jl)

† (1.5)

is hermitian, and can be diagonalised by a transformation SU(3)LL
:

yLij(y
L
jl)

† = UeD
2
eU

†
e (1.6)

Similarly,

(yLij)
†yLjl (1.7)

is also hermitian, and can be diagonalised by a transformation SU(3)eR :

(yLij)
†yLjl = WeD

2
eW

†
e (1.8)

Note that the diagonal matrix De is the same in both cases, as the eigenvalues of the 2 prod-

ucts are the same on both cases. If De has only positive eigenvalues, it can be shown that these

decompositions are unique, and that

yL = UeDeW
†
e (1.9)

The matrices Ue,W
†
e will get reabsorbed by the left and right flavour transformations, leaving the

diagonal mass matrix

M e = De
v√
2

(1.10)

All other terms in the lagrangian are invariant separately under both transformations, so no trace

of such transformation remains after it is done. So the parameters in Ue,We are not observable, and

the yukawa lepton sector brings us 3 additional parameters only, the masses me,mµ,mτ .

The original symmetry group U(3)L × U(3)R is broken. If the masses were all degenerate, the

group would break to U(3)L×U(3)R → U(3)V = U(1)L×SU(3)V as we have seen previously. Given

that the masses are not degenerate, SU(3)V breaks to the diagonal subgroup

U(3)L × U(3)R → U(1)e × U(1)µ × U(1)τ (1.11)

The symmetry groups U(1)l, l = e, µ, τ are called lepton family number conservation, that are exact

in the SM. The fact that the lagrangian has an exact global symmetry under these groups implies that

the number of e, µ, τ leptons, Ne, Nµ, Nτ , is separately conserved in each interaction. A subgroup of

such group is U(1)L, called lepton number conservation, that implies the conservation of the total

lepton number NL = Ne +Nµ +Nτ .
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1.2 Yukawa quark sector

We can try to apply the same method to give mass to quarks. this time, the difference will be that

both up and down quarks need to get a mass. for down quarks, once again the value of YQ−Yd = −1
2

is the same as before, and we can still couple it to the higgs doublet

−ydijQ̄L,idR,jΦ + h.c. (1.12)

In the case of up quarks, however, YQ − Yu = 1
2 . We might think that we are in trouble, but luckily

we can use the hermitian conjugate. Note that, to get a gauge invariant term, now the SU(2)L
contraction needs to be different from usual:

−yuijQ̄L,i,auR,jεabΦ
†
b + h.c. (1.13)

where we made explicit the SU(2)L indices a, b.

We can operate in the same way as before, obtaining the decompositions

yu = UuDuW
†
u (1.14)

yd = UdDdW
†
d (1.15)

There is only one problem. In the case of quarks, the symmetry group is

U(3)Q × U(3)u × U(3)d (1.16)

So, while we are free to operate separately different rotations Wu,Wd on the right handed fields

uR, dR, and keeping the rest of the lagrangian invariant, operating different transformations Uu, Ud
on the 2 components of the left handed fields will affect some terms of the other parts of the

lagrangian. We need to work in the mass eigenstats basis, so we will proceed anyway. We get the

mass terms as with leptons:

Mu = Du
v√
2

(1.17)

Md = Dd
v√
2

(1.18)

By applying the Uu, Ud transformation on left handed fields, we will get a factor

VCKM = U †
uUd (1.19)

in any term of the lagrangian that was contracting a left handed u-family quark with a left handed

d-family quark. There is only one such term in the lagranian, the one giving the interaction with

the W boson. This allows the weak interaction to change a quark of a family in a quark of any other

family. Note that while the W interaction vertex now turns into

−i g√
2
γµPLδ

ij → −i g√
2
γµPLV

ij (1.20)

thus connecting all up quarks with all down quarks, the interaction vertex with both the photon

and the Z boson remains flavour-diagonal, as they connect only up quark with up quarks, and down
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quarks with down quarks. At tree level, flavour is conserved in SM neutral currents. At loop level,

we will see that, thanks to the GIM mechanism.

Of the original symmetry group, only the subgroup U(1)B of baryon number conservation

survives. One can check, by counting d.o.f., that for nF families, the CKM matrix has

nF (NF − 1)

2
(1.21)

real parameters (angles), and

(nF − 1)(nF − 2)

2
(1.22)

phases. For nF = 3 we obtain 3 angles and 1 phase. The existence of a non-zero phase is a source

of CP violation in the standard model.

The CKM matrix elements are approximately

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (1.23)

1.3 GIM Mechanism

The GIM mechanism suppressed FCNC at loop level, combining the unitarity of the CKM matrix

with the smallness of quark masses. For example, Calculate the Amplitude b→ sγ. The amplitude

will include an external b quark leg, and external s quark leg, and one or more internal lines with

a quark of the up family. It will also include 2 vertices with the W boson, that will bring a factor

VblV
†
ls. For a given internal line flavour l, the amplitude will be

Ml = VblV
†
lsF

(
m2
l

M2
W

)
(1.24)

Now, assuming ml �MW , the function can be expanded in power of
m2

l

M2
W

, and the result is

∑
l

Ml =
∑
l

VblV
†
ks

(
Aδlk +BD2

u,lm +O(D4
u)
)

(1.25)

=
∑
l

VblV
†
ks

(
BD2

u,lm +O(D4
u)
)

(1.26)

where the first term cancels out due to the unitarity of the matrix V . For light quarks, the
m2

l

M2
W

factor will suppress the contribution, while in the case of the top quark the contribution will still be

suppressed thanks to the smallness of V13, V23.
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