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1 Optical Theorem and Unitarity

1.1 The Optical theorem and decay widths

The S matrix can be written as

S = 1 + iT (1.1)

This matrix is unitary, so

SS† = (1 + iT)(1− iT†) = 1 (1.2)
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0 = i(Tij − T†ij) + TilTlj (1.3)

The T matrix is infinite dimensional, with each row for each set of particles and for each momentum

kµ. We can relate this to the M matrix by

Tij = Mij(2π)4δ4(
∑

pi −
∑

pj) (1.4)

and replacing the sum over the index l by∑
l

→
∑
l

∏
pl

d3pl
(2π)32Epl

(1.5)

We get

−i(Mij −M †ji)δ
4(pi − pj) =

∏
pl

d3pl
(2π)32Epl

MilM†ljδ
4(pi − pl)(2π)4δ4(pl − pj) (1.6)

=
∏
pl

d3pl
(2π)32Epl

MilM†ljδ
4(pi − pj)(2π)4δ4(pl − pj) (1.7)

and so

(−i(Mij −M †ji)−
∏
pl

d3pl
(2π)32Epl

MilM†lj(2π)4δ4(pl − pj))δ4(pi − pj) = 0 (1.8)

We now choose the case i = j. The overall delta function is not zero, so what is in the brackets must

be zero. We get

−i(Mii −M †ii)− =
∏
pl

d3pl
(2π)32Epl

MilM†li(2π)4δ4(pl − pj) (1.9)

2Im[Mii] = |Mil|2dΦLIPS (1.10)

where the sum over all possible l states is assumed.

Now we remind the equation to calculate a cross section

dσ =
1

2E12E2|v1 − v2|
|M̄|2dΦLIPS (1.11)

The equation for a (partial) decay width (inverse of decay time) is

dΓ =
1

2M
|M̄|2dΦLIPS (1.12)

We get

Im[Mii] = MΓ (1.13)

Where we have ”assumed” |M̄|2 = |M|2. This is true for scalar particles. We will see that this

relation holds also for other particles. Such particles will have spinor or Lorentz indices in their self

energy, and correctly accounting for them will keep such relation true.
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The optical theorem tells us that the matrix elements of the M matrix are related to each

other due to the unitarity constraint of the S matrix. Our first conclusion, Eq. 1.13, tells us that

the theory is not complete at loop level: in fact, while one can usually calculate the decay amplitude

at loop level, the matrix elementMii does not develop an imaginary part at tree level (at tree level

one has just the propagator). We will see that the decay width is not just a property of a particle

that tells us about its lifetime, but that it can play important roles in certain other situations. But,

before that, we will now see a few examples of application of the optical theorem to self energies and

decay widths.

We now go through some examples.

1.2 Unitarity limit on cross sections from Optical Theorem

Starting back from the equation

2Im[Mii] =

∫
|Mij |2dΦLIPS (1.14)

We can specialise now to the case of a 2 particle initial and final state. For simplicity, we also assume

particles of the same mass, but the result will be general

2Im[Mii] =
1

8π

√
1−

4m2
j

s
|Mij |2 (1.15)

We can now place an upper bound on the LHS and a lower bound on the RHS

2|Mii| ≥ 2Im[Mii] =
∑
j

1

8π

√
1−

4m2
j

s
|Mij |2 ≥

1

8π

√
1−

4m2
i

s
|Mii|2 (1.16)

We get the inequality

2|Mii| ≥
1

8π

√
1−

4m2
i

s
|Mii|2 =

v

8π
|Mii|2 (1.17)

|Mii| ≤
16π

v
(1.18)

We obtain a bound on the elastic cross section i→ i (we use the c.o.m. frame)

σ =
1

2E12E2|v1 − v2|
|Mii|2

v

8π
(1.19)

=
1

8E2v
|Mii|2

v

8π
(1.20)

≤ 1

64πE2

(
16π

v

)2

=
4π

E2v2
=

4π

p2
com

→s→∞
16π

s
(1.21)

We can verify this bound using our scalar example, but this time let’s assume that the particle S

decays into 2 distinguishable particles f the same mass, so that we don’t have the 1/2 factor in the

phase space. The width of S is

Γ =
µ2

16πM

√
1− 4m2

M2
(1.22)
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Figure 1: Gluon Feyman rules

The dressed propagator for S becomes

i

Q2 −M2 − iMΓ
(1.23)

The matrix element for ηη
′ → ηη

′
is

iM =
i(−iµ)2

s−M2 − iMΓ
(1.24)

|M|2 =
µ4

(s−M2)2 +M2Γ2
(1.25)

σ(s) =
1

2sv

v

8π
|M|2 =

1

16πs

µ4

(s−M2)2 +M2Γ2
(1.26)

The peak of the cross section is reached at the resonance, for s = M2. For such energy we get

σ(M2) =
µ4

16πM4Γ2
=

µ4

16πM4 µ4

(16π)2M2 v2
(1.27)

=
1

M2 1
(16π)v

2
=

16π

sv2
=

4π

p2
com

(1.28)

2 Gauge Invariance for Non-Abelian Gauge groups

2.1 Ward Identity

The feynman rules for the fermion-gluon vertex can be worked out easily, also in analogy with QED.

−igsγµ(ta)ij (2.1)

However, one may wonder what is the correct feynman rule for the gluon propagator (see Fig.1).

One could be tempted to use

−igµν
k2

. (2.2)

However, we have to worry about the ward identity to be satisfied. To check if it is, we will

now compute it for the following process

qq̄ → gg. (2.3)
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Figure 2: QED-like feyman diagrams for qq̄ → gg

We start by calculating the QED-like diagrams gives in Fig. 2.

Factorising the external polarizations and contracting one index with the relative gluon mo-

menta, we get

iMµν
1+2k2ν = (igs)

2v̄(p+)

(
γµta

i

/p− /k2 −m
/k2t

b + /k2t
b i

/k2 − /p+
−m

γµta

)
u(p) (2.4)

By using

(/p−m)u(p) = 0, v̄(p+)(−/p+
−m) = 0, (2.5)

we get

iMµν
1+2k2ν = (igs)

2v̄(p+)

(
γµta

i(/k2 − (/p−m))

/p− /k2 −m
tb + tb

i(/k2 − /p+
−m)

/k2 − /p+
−m

γµta

)
u(p) (2.6)

= i(gs)
2v̄(p+)γµu(p)[ta, tb] (2.7)

For QED, this is zero as the group is abelian. For non-abelian group, this is non-zero. This is ok,

as there is a third diagram in the case of non-abelian gauge group:

iMµν
3 k2ν = igsv̄(p+)γρt

cu(p)
−i
k2

3

gsfabc (gµν(k2 − k1)ρ + gνρ(k3 − k2)µ + gρµ(k1 − k3)ν) k2ν (2.8)

Now as

k3 = −k1 − k2 (2.9)

the part in brackets, contracted with k2, becomes

gρµk2
3 − k

ρ
3k

µ
3 − g

ρµk2
1 + kρ1k

µ
1 . (2.10)
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Using the dirac equation we note that

v̄(p+)/k3u(p) = −v̄(p+)(/p+ /p+
)u(p) = −v̄(p+)(m−m)u(p) = 0 (2.11)

So the second term will vanish after we contract it with the gamma matrix in the fermion line. The

first term instead cancels with the other 2 diagrams

i(Mµν
1+2 +Mµν

3 )k2ν = g2
sfabcv̄(p+)

(
−γµtc +

γµk2
3 − γµk2

1 + /k1k
µ
1

k2
3

tc
)
u(p) (2.12)

= g2
sfabcv̄(p+)

(
−γµk2

1 + /k1k
µ
1

k2
3

tc

)
u(p) (2.13)

If the gluons are on shell, the first therm is zero due to k2
1 = 0, and the second term cancels when

contracted with the external polarization.

However, if gluons are NOT on shell, the ward identity is NOT satisfied. This is a problem for

virtual particles (i.e. loop diagrams) and a disaster for renormalization!

2.2 Optical Theorem for an SU(N) theory

We can write the polarizations as

ξT,1 = (0, 1, 0, 0) (2.14)

ξT,2 = (0, 0, 1, 0) (2.15)

ξ+ = (
k0√
2|k0|

, 0, 0,
k√
2|k|

) (2.16)

ξ− = (
k0√
2|k0|

, 0, 0,− k√
2|k|

) (2.17)

we get the following relations

ξT,i,µξ
µ
T,j = −δij (2.18)

ξ±µξ
µ
T,i = 0 (2.19)

ξ+µξ
+µ = ξ−µξ

−µ = 0 (2.20)

ξ+µξ
−µ = 1 (2.21)

we can rewrite the polarization sum as

−gµν =
∑
i,j

ξT,i,µξT,j,ν − ξ+µξ−ν − ξ−µξ+ν (2.22)

For the transverse polarizations ward identity is ok. ξ± are problematic.

Exercise Calculate i(M1+2 +M3)µνk2νξ−µ

At tree level we could avoid the problem by just summing over the right polarizations, but the

problem would come back at loop level, and would ultimately break the optical theorem, as show in

Fig. 3.
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Figure 3: Optical theorem for qq → gg

2.3 Faddev-Popov Lagrangian and BRST symmetry

This subsection is here only for completeness, and will not be discussed at lecture

We need to find a way to quantise the theory that cancels they unphysical d.o.f. from the

amplitudes, so that theory can be renormalisable.

It turns out we can solve this problem by adding some additional fields in the adjont rep-

resentation. However, for this to wok out we need the fields to be anticommuting fields that are

Grassman variables (anticommuting with c-numbers). The requirement for this can be easily seen

with functional integration, where adding a gauge-fixing term gives rise to additional terms as

det
δG(Aa)

δα
(2.23)

is not independent of A for a non-abelian gauge group. One has

δG(Aa)

δα
=

1

g
∂µDµ (2.24)

and one can write

det
δG(Aa)

δα
= det

1

g
∂µDµ =

∫
DcDc̄ei

∫
d4xc̄a(−∂µDacµ cc) (2.25)

Dac
µ = ∂µδ

ac + ig(tb)acA
b
µ (2.26)

= ∂µδ
ac + gfabcA

b
µ (2.27)

BRST symmetry The gauge-fixing term breaks gauge invariance. We want to add a gauge

fixing term and retaining some kind of symmetry in the lagrangian, that will allow the theory to be

renormalisable. This is the BRST symmetry. On the physical fields, it acts exactly the same as a

gauge transformation with αa = εca:

δAaµ = εDac
µ c

c (2.28)

δΨ = igεcataΨ (2.29)

We add 3 new fields. The 2 anticommuting fields c, c̄, and an auxiliary field B. Auxiliary field means

that it will have no kinetic term, so it will not propagate and it is unphysical. We will remove it

later on from the lagrangian using equations of motion.

δca = −1

2
gεfabcc

bcc (2.30)
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δc̄a = εBa (2.31)

δBa = 0 (2.32)

The infinitesimal variations for the new fields are defined using the following logic. We want

δL = 0. (2.33)

For this to happen, we need δ2 to be zero for any field. So the definition of δca comes from the

requirement δ2Ψ = 0, while the definition of δBa comes from te requirement δ2c̄a = 0. The definition

of δc̄ is free and we just made a generic choice to set it equal to the auxiliary field Ba that we will

later remove from the lagrangian.

Exercise Prove that δ2 = 0 for all fields.

We want a lagrangian that is invariant under BRST symmetry. The Yang-Mills part is already

invariant due to gauge symmetry

L = LYM + LGF (2.34)

δLYM = 0 (2.35)

So we need to choose LGF such that

δLGF = 0 (2.36)

Thanks to the property

δ2 = 0 (2.37)

this property will be satisfied by any term such that

LGF =
1

ε
δO (2.38)

for a generic operator O. We choose

O = c̄a
(

1

2
ξBa −Ga

)
(2.39)

Ga = ∂µAaµ (2.40)

Exercise Show that

LGF =
ξ

2
(Ba)2 −Ba∂µAaµ − c̄a∂µDac

µ c
c (2.41)

Exercise Integrate out Ba to get

LGF = − 1

2ξ
(∂µAaµ)2 − c̄a∂µDac

µ c
c (2.42)
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Figure 4: Feynman rule vertex for ghosts

The first term is the same as in QED, while the second term contains the ghost fields that

interact with gluons. Note that the interaction is proportional to the structure constants fabc, this

is why we do not need ghosts in QED: they decouple form the physical particles.

The Feynman rule associated with the vertex in Fig. 4 is

−gfabcpµ, (2.43)

and the propagator is

iδac

k2
. (2.44)

One also needs to add a − sign for each ghost loop.

2.4 RGE equation for QED

This subsection is here only for completeness, and will not be discussed at lecture,

apart from the last part with the final result

When making renormalization at 1 loop, we noticed that log functions appear in the observables

(i.e., they are physical). For example, we saw that the propagator can be taken as the sum

D(q2) =
−i(gµν − qµqν

q2
)

q2

∞∑
n=0

q2Π(q2)

q2
=
−i(gµν − qµqν

q2
)

q2(1− Σ(q2))
(2.45)

Π(q2) =
e2

2π2

∫ 1

0
dxx(1− x) log

(
m2 − q2x(1− x)

m2 − q2
0x(1− x)

)
(2.46)

where we have chosen a scale q0 where

Π(q2
0) = 0 (2.47)

Now, in the limit where our scales are much larger than the mass of the fermion in the loop, this

simplifies to
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Π(q2) =
e2

2π2
log

(
q2

q2
0

)∫ 1

0
dxx(1− x) =

e2

12π2
log

(
q2

q2
0

)
(2.48)

we have anticipated that, at 1 loop, our EM potential gets modified to

V (p2) =
e2

p2
(1 + Σ(q2)) (2.49)

but if we resum all 1-loop 1PI diagrams we get instead

V (p2) =
e2

p2

1

1−Π(q2)
(2.50)

This tells us that it is important to resum all the 1PI diagrams, as when Σ → 1, the result can be

very different! Perturbation theory breaks down due to the large logs.

Now we will see a technique that will let us resum the large logs, without having to compute

all the loop diagrams. We want to leave the computation of loop diagrams to the case where we

want to make predictions to the NLO in α, but accounting for all (α log p2)n terms. Rescaling the

fields in our lagrangian we get

−1

4
Z3FµνF

µν + iZ2ψ̄ /∂ψ − eZ1ψ̄ /Aψ (2.51)

Let’s consider G(2,1), the 3 point function with 2 external fermions and one external photon. If we

vary a bit the renormalization scale M , we get that

ψ →
√
Z2ψ (2.52)

A →
√
Z3A (2.53)

From the definition of the 3 point function

〈Ω|ψ̄Aµψ|Ω〉 (2.54)

then

dG(2,1) = (2
∂
√
Z2

∂M
+
∂
√
Z3

∂M
)G(2,1)δM (2.55)

However, if we read G(2,1) from the lagrangian, we can think it as a function of M, e, and we can

write

dG(2,1) = (
∂G(2,1)

∂M
+
∂G(2,1)

∂e

∂e

∂M
)δM (2.56)

Equating, and setting G(2,1) = eZ1 we get

e∂Z1

∂M
+ Z1

∂e

∂M
− (2

∂
√
Z2

∂M
+
∂
√
Z3

∂M
)eZ1 = 0 (2.57)

Taking the first nonzero order in e, δi, we get

e
∂δ1

∂M
+

∂e

∂M
− e ∂δ2

∂M
− e1

2

∂δ3

∂M
= 0 (2.58)

We get

βe(e) = M
∂e

∂M
= eM

∂

∂M

(
−δ1 + δ2 +

1

2
δ3

)
(2.59)

We will now find the counterterms to calculate βe(e).
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2.4.1 Vacuum polarization

As we said, we do not need to include the fermion masses. So the diagram is

iΠµν(q2) = −(−ie)2

∫
ddk

(2π)d
Tr[γµ/kγν(/k + /q)]

k2(k + q)2
(2.60)

= −4e2

∫ 1

0
dx

∫
ddk

(2π)d
2kµkν − gµν(k2 + kq)

((k + xq)2 −∆)2
(2.61)

where we dropped all qµ, qν terms. We shift it

= −4e2

∫ 1

0
dx

∫
ddk

(2π)d
2lµlν − gµν((l − xq)2 − xq2)

(l2 −∆)2
(2.62)

= −4e2

∫ 1

0
dx

∫
ddk

(2π)d
2lµlν − gµν(l2 − x(1− x)q2)

(l2 −∆)2
(2.63)

= −4e2

∫ 1

0
dx

∫
ddk

(2π)d

2
d l

2gµν − gµν(l2 + ∆)

(l2 −∆)2
(2.64)

= 4e2gµν
∫ 1

0
dx

∫
ddk

(2π)d
(1− 2

d)l2 + ∆

(l2 −∆)2
(2.65)

=
4e2gµν

16π2

∫ 1

0
dx

(
(1− 2

d
)(−i)d

2

Γ
(
1− d

2

)
∆1− d

2

+ i
Γ
(
2− d

2

)
∆

∆2− d
2

)
(2.66)

=
4ie2gµν

16π2
Γ

(
2− d

2

)∫ 1

0
dx∆

(
−1− 2

d

1− d
2

d
2 + 1

)
∆2− d

2

(2.67)

=
8ie2gµν

16π2
Γ

(
2− d

2

)∫ 1

0
dx∆

1

∆2− d
2

(2.68)

= −q2 8ie2gµν

16π2
Γ

(
2− d

2

)∫ 1

0
dxx(1− x)

1

(−q2x(1− x))2− d
2

(2.69)

The counterterm will need to cancel the divergency, so will need to be

(−iq2gµν)δ3 = +q2 8ie2gµν

16π2
Γ

(
2− d

2

)∫ 1

0
dxx(1− x)

1

(M2x(1− x))2− d
2

(2.70)

= q2 8ie2gµν

16π2
Γ

(
2− d

2

)
1

(M2)2− d
2

∫ 1

0
dxx(1− x) (2.71)

= (−iq2gµν)(−)
e2

12π2
Γ

(
2− d

2

)
1

(M2)2− d
2

(2.72)

δ3 = − e2

12π2
Γ

(
2− d

2

)
1

(M2)2− d
2

(2.73)

2.4.2 Fermion Self Energy

From the fermion self energy we get

iΣ(q2) = (−ie)2

∫
ddk

(2π)d
γµ
i/k

k2
γν
−igµν

(k − q)2
(2.74)

– 11 –



= 2e2

∫
ddk

(2π)d
/k

k2(k − q)2
(2.75)

= 2e2

∫ 1

0
dx

∫
ddk

(2π)d
/k

((k − xq)2 −∆)2
(2.76)

= 2e2

∫ 1

0
dx

∫
ddl

(2π)d
x/q

(l2 −∆)2
(2.77)

= 2e2
/q

∫ 1

0
dxx

∫
ddl

(2π)d
1

(l2 −∆)2
(2.78)

=
2e2i

16π2 /q

∫ 1

0
dxx

Γ
(
2− d

2

)
∆2− d

2

(2.79)

So the counterterm is

i/qδ2 = − 2e2i

16π2 /q

∫ 1

0
dxx

Γ
(
2− d

2

)
(M2)2− d

2

(2.80)

δ2 = − 2e2

16π2

Γ
(
2− d

2

)
(M2)2− d

2

∫ 1

0
dxx (2.81)

= − e2

16π2

Γ
(
2− d

2

)
(M2)2− d

2

(2.82)

2.4.3 Vertex Function

iΓµ = (−ie)3

∫
ddk

(2π)d
γν
i/k

k2
γµ
i(/k + /q)

(k + q)2
γρ
−igνρ
k2

(2.83)

= 2e3

∫
ddk

(2π)d
/kγµ(/k + /q)

k4(k + q)2
(2.84)

We need to decompose the product of gamma matrices and find the coefficient of γµ, so we project

on it

1

16
Tr[/kγµ(/k + /q)γµ] = − 2

16
Tr[/k(/k + /q)] = −1

2
(k2 + kq) (2.85)

So

iΓµ = −e3γµ
∫

ddk

(2π)d
k2 + kq

k4(k + q)2
(2.86)

= −2e3γµ
∫ 1

0
dx

∫ 1−x

0
dy

∫
ddk

(2π)d
k2 + kq

((k + xq)2 −∆)3
(2.87)

= −2e3γµ
∫ 1

0
dx(1− x)

∫
ddl

(2π)d
(l − xq)2 − xq2

(l2 −∆)3
(2.88)

= −2e3γµ
∫ 1

0
dx(1− x)

∫
ddl

(2π)d
l2 − x(1− x)q2

(l2 −∆)3
(2.89)

= −2e3γµ
∫ 1

0
dx(1− x)

∫
ddl

(2π)d
l2 + ∆

(l2 −∆)3
(2.90)

The second term is finite and does not give raise to Γ(2− d/2), so we drop it.

iΓµ ∼ −2e3γµ
∫ 1

0
dx(1− x)

∫
ddl

(2π)d
l2

(l2 −∆)3
(2.91)
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Figure 5: Feynman Diagrams for Gluon Self Energy

= − 2ie3

16π2
γµΓ

(
2− d

2

)∫ 1

0
dx(1− x)

1

∆2− d
2

(2.92)

So the counterterm is

−ieγµδ1 =
2ie3

16π2
γµΓ

(
2− d

2

)∫ 1

0
dx(1− x)

1

(M2)2− d
2

(2.93)

δ1 = − 2e2

16π2
Γ

(
2− d

2

)∫ 1

0
dx(1− x)

1

(M2)2− d
2

(2.94)

= − 2e2

16π2
Γ

(
2− d

2

)
1

(M2)2− d
2

∫ 1

0
dx(1− x) (2.95)

= − e2

16π2
Γ

(
2− d

2

)
1

(M2)2− d
2

(2.96)

2.4.4 Running of electron coupling constant

We obtain

βe(e) = M
∂e

∂M
= eM

∂

∂M

(
−δ1 + δ2 +

1

2
δ3

)
=

e3

12π2
(2.97)

βα = M
∂α

∂M
=

e

2π
βe =

e4

24π3
=

2

3π
α2 (2.98)

dα

d logM2
=

1

2
βα =

1

3π
α2 (2.99)

We can now solve this differential equation

dα

α2
=

1

3π
d logM2 (2.100)

[
1

α
]
α(q2)

α(M2
0 )

=
1

3π
log

q2

M2
0

(2.101)

α(q2) =
α(M2

0 )

1− α(M2
0 )

3π log q2

M2
0

(2.102)

2.5 Asymptotic freedom, Running α

This subsection is here only for completeness, and will not be discussed at lecture,

apart from the last part with the final result

We now want to calculate the RGE equation for a non-abelian gauge group. The first step is to

calculate the gluon Self energy. This includes non only the QED-like diagram with a fermion loop,

but also new diagrams that arise in non-abelian gauge groups, as shown in Fig. 5.
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The QED-like diagram can be quickly worked up by analogy with QED, the only difference is

the presence of the group generator ta at each vertex, so the contribution to δ3 will be

δ3,QED =
−8e2

6(4π)d/2
Γ(2− d

2)

(M2)2− d
2

(2.103)

δ3,ferm,QCD = δ3,QED|e→g × Tr[tatb] (2.104)

2.5.1 Color Traces

We will need to be able to calculate color traces to be able to compute any diagram in QCD, in

particular the ones we need for the running of α. The single generator is traceless

Tr[ta] = 0 (2.105)

Each generator is ”orthogonal” to every other

Tr[tart
b
r] = C(r)δab (2.106)

where C(r) is a number that depends on the representation r. Quarks are in the fundamental

representation, so are our ta, and

C(F ) =
1

2
(2.107)

One important operator to consider is the Quadratic Casimir operator, sometimes just short-

ened to Casimir operator,

tart
a
r (2.108)

One can check that this operator commutes with all generators of the group.

Exercise Prove this

Due to Schur’s lemma, it means that it is proportional to the identity

tart
a
r = C2(r)1d(r)×d(r) (2.109)

By taking the trace on both sides one gets

Tr[tart
a
r ] = C(r)δaa = C2(r)d(r) (2.110)

C(r)d(G) = C2(r)d(r) (2.111)

For the fundamental of SU(N) one has

C(F ) =
1

2
(2.112)

d(G) = N2 − 1 (2.113)

d(F ) = N (2.114)
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C2(F ) =
N2 − 1

2N
(2.115)

giving C2(F ) = 3/4 for SU(2) and C2(F ) = 4/3 for SU(3).

An useful identity to calculate color traces is

T aijT
a
kl =

1

2

(
δilδjk −

1

N
δijδkl

)
(2.116)

Proof: Let M be an N ×N hermitian matrix, then

M = M01 +Mat
a (2.117)

M0 =
1

N
Tr[M ] (2.118)

Ma = 2Tr[Mta] (2.119)

M =
1

N
Tr[M ]1 + 2Tr[Mta]ta (2.120)

Mij =
Mkkδij

N
+ 2Mklt

a
klt

a
ij (2.121)

δilδjkMlk =

(
δijδkl
N

+ 2taijt
a
kl

)
Mlk (2.122)

obtaining (
taijt

a
kl −

1

2

(
δilδjk −

1

N
δijδkl

))
Mkl = 0 (2.123)(

taijt
a
kl −

1

2

(
δilδjk −

1

N
δijδkl

))
= 0 (2.124)

Exercise Use the identity to calculate

Tr[tatbtatc] (2.125)

Exercise One can write the identity

T aT b =
1

2

(
1

N
δab1 + (dabc + ifabc)T

c

)
(2.126)

find the value of dabc.

Exercise Calculate fabcfabd

Note fabcfabd is the quadratic casimir operator for the adjoint representation,

C2(G) = C(G) = N (2.127)
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Figure 6: Feynman Pure Gauge Diagram for Gluon Self Energy 1

2.5.2 Gluon self energy - δ3

Coming back to the gluon self energy, the contribution of fermion loops to δ3 is

δ3,ferm =
−8g2

6(4π)d/2
Γ(2− d

2)

(M2)2− d
2

C(r)δab (2.128)

=

(
g2

(4π)2

Γ(2− d
2)

(M2)2− d
2

)(
−4

3
C(r)

)
(2.129)

We now need to calculate the pure gauge and ghost contributions.

We start from the diagram in Fig.6. We choose the gauge ξ = 1.

=
1

2

∫
d4

(2π)4

−i
p2

−i
(p+ q)2

g2facdfbcd (2.130)

= −g
2

2
C2(G)δab

∫ 1

0
dx

∫
d4P

(2π)4

Nµν

(P 2 −∆)2
(2.131)

We can discard any term odd in P inside Nµν , and substitute PµP ν → P 2

d g
µν , obtaining

Nµν = −gµνp2(1− 1

d
)− gµνq2((2− x)2 + (1 + x)2) (2.132)

+ qµqν((2− d)(1− 2x)2 + 2(1 + x)(2− x)) (2.133)

We can now perform the wick rotation and make the 4-d integral

=
ig2

(4π)d/2
C2(G)δab

∫ 1

0
dx

1

∆2−d/2

(
Γ(1− d

2
)gµνq2(

3

2
(d− 1)x(1− x)) (2.134)

+ Γ(2− d

2
)gµνq2(

1

2
(2− x)2 +

1

2
(1 + x)2 (2.135)

− Γ(2− d

2
)qµqν((1− d

2
)(1− 2x)2 + (1 + x)(2− x)))

)
(2.136)

This diagram alone does not have the structure that we desire. It is not transverse, and we

have a pole at d = 2 (mass renormalization).

We evaluate the second diagram, as shown in Fig. 7,
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Figure 7: Feynman Pure Gauge Diagram for Gluon Self Energy 2

=
1

2

∫
d4p

(2π)4

−igµν

p2
δcd(−ig2) (fabefcde(g

µνgρσ − gµσgνρ) (2.137)

+ facefbde(g
µνgρσ − gµσgνρ) + fadefbce(g

µνgρσ − gµσgνρ)) (2.138)

First line is killed by asymmetry of f , second and third line are equal, obtaining

= (−g2)C2(G)δabgµν(d− 1)

∫
d4p

(2π)4

1

p2
(2.139)

We want to sum it with the other diagram, so we perform the same shift,

= −g2C2(G)δabgµν(d− 1)

∫ 1

0
dx

∫
d4P

(2π)4

P 2 + (1− x)2q2

(P 2 −∆)2
(2.140)

=
ig2

(4π)d/2
δabC2(G)

∫ 1

0
dx

1

∆2−d/2

(
−Γ(1− d

2
)gµνq2(

1

2
d(d− 1)x(1− x)) (2.141)

− Γ(2− d

2
)gµνq2(d− 1)(1− x)2

)
(2.142)

We could now wonder if the pole in d = 2 gets canceled once summing up the 2 diagrams. We

can try to verify this

= Γ(1− d

2
)gµνq2

(
3

2
(d− 1)x(1− x)− 1

2
d(d− 1)x(1− x)

)
(2.143)

= Γ(1− d

2
)gµνq2 (d− 1)x(1− x)(3− d)

2
(2.144)

Indeed, the pole does not cancel.

This is how we realise we really need the additional loop with ghosts,

= (−1)

∫
d4p

(2π)4

i

p2

i

(p+ q)2
g2fdacfcbd(p+ q)µpν (2.145)

=
ig2

(4π)d/2
δabC2(G)

∫ 1

0
dx

1

∆2−d/2

(
−Γ(1− d

2
)gµνq2x(1− x)

2
+ Γ(2− d

2
)qµqνx(1− x)

)
(2.146)
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Figure 8: Fermion Self Energy

Let’s now check again the cancellation of the pole at d = 2, now we get

= Γ(1− d

2
)gµνq2x(1− x)

(d− 1)(3− d)− 1

2
(2.147)

= Γ(1− d

2
)gµνq2x(1− x)(1− d

2
)(d− 2) (2.148)

= Γ(2− d

2
)gµνq2x(1− x)(d− 2) (2.149)

Good news, the pole cancels! We now have to work out the coefficient of Γ(2− d
2). If we sum

up and integrate over x we get that the result is transverse!

=
g2

(4π)d/2
Γ(2− d

2)

(M2)2−d/2

(
i(q2gµν − qµqν)

)
δab
(
C2(G)

14− d
6

)
(2.150)

We are finally ready to compute δ3:

δ3 =
g2

(4π)2

Γ(2− d
2)

(M2)2−d/2

(
5

3
C2(G)− 4

3
C(r)nf

)
(2.151)

Exercise Perform the same calculation in a generic ξ gauge.

2.5.3 Quark self energy - δ2

We can work the diagram in Fig. 8 out in analogy with QED

δ2,QED = − e2

(4π)d/2
Γ

(
2− d

2

)
1

(M2)2−d/2 (2.152)

so we can get the QCD one as

δ2,QCD = δ2,QED|e→gtatbδab = δ2,QED|e→gC2(r) (2.153)

So we get

δ2 =
g2

(4π)2

Γ(2− d
2)

(M2)2−d/2 (−C2(r)) (2.154)
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Figure 9: Vertex Correction 1

2.5.4 QCD vertex correction - δ1

We have 2 diagrams in this case.

The first one is similar to QED, and we will work in analogy. It is shown in Fig. 9. We only

need the divergent part of this diagram. The result from QED was that

δ1,QED = − e2

(4π)d/2
Γ(2− d

2)

(M2)2−d/2 (2.155)

Working by analogy we have

δ1,ferm,QCD = δ1,QED|e→gtbtatb (2.156)

We work out the color factor as

= tbtatb = tbtbta + tb[ta, tb] (2.157)

= C2(r)ta + itbfabct
c = C2(r)ta +

i

2
fabc[t

b, tc] (2.158)

= C2(r)ta +
1

2
ifabcifbcdt

d =

(
C2(r)− 1

2
C2(G)

)
ta (2.159)

So the contribution of the diagram reads (the ta factor is reabsorbed when factoring out the feynman

rule for the counterterm)

g2

(4π)2

Γ(2− d
2)

(M2)2−d/2

(
−C2(r) +

1

2
C2(G)

)
(2.160)

The second diagram, shown in Fig. 10, is,

=

∫
d4p

(2π)4
(igγνt

b)
i

p2
(igγρt

c)
−i

(k′ − p)2

−i
(k − p)2

gfabc (2.161)

×
(
gµν(2k

′ − k − p)ρ + gνρ(−k′ − k + 2p)µ + gµρ(2k − k′ − p)ν
)

(2.162)

→ g3

2
C2(G)ta

∫
d4P

(2π)4
γν /Pγρ

gµνP ρ − 2gνρPµ + gµρP ν

(P 2 −∆)3
(2.163)
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Figure 10: Vertex Correction 2

=
g3

2
C2(G)taγµ

∫
d4P

(2π)4

(2 + 4
d)P 2

(P 2 −∆)3
(2.164)

= (−igγmuta) g2

(4π)d/2
Γ(2− d

2)

(M2)2−d/2

(
−3

2
C2(G)

)
(2.165)

So we can now get δ1:

δ1 =
g2

(4π)2

Γ(2− d
2)

(M2)2−d/2 (−C2(r)− C2(G)) (2.166)

2.5.5 RGE for α

We are now ready to compute the QCD beta function.

β(g) = gM
∂

∂M

(
−δ1 + δ2 +

1

2
δ3

)
(2.167)

=
g3

(4π)2
Γ(2− d

2
)(−2)(2− d

2
)

(
C2(r) + C2(G)− C2(r) +

1

2
(
5

3
C2(G)− 4

3
nfC(r))

)
(2.168)

= − g3

(4π)2
Γ(3− d

2
)

(
11

3
C2(G)− 4

3
nfC(r)

)
(2.169)

= − g3

(4π)2

(
11

3
C2(G)− 4

3
nfC(r)

)
(2.170)

Fr an abelian group, C2(G) = 0 and β > 0. FOr a non abelian group, β(g) < 0 for small nf .

For the QCD case

C2(G) = N = 3 (2.171)
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C(F ) =
1

2
(2.172)

β(g) = − g3

(4π)2

(
11− 2

3
nf

)
(2.173)

Exercise Evolve αs from MZ to find the QCD pole.

2.5.6 Renormalizability and gauge invariance

Now one could ask himself: should I run the same calculation for the 3-gluon and 4-gluon point

functions, and check that I get the same RGE equation for gs also for them? In a theory that is

gauge invariant, this is indeed not necessary. As gauge invariance is not spoiled at loop level, it

will still hold after renormalization, and so will the relations between the coefficients of the various

vertices.

It is a general result, that gauge invariance plus having in the lagrangian all operators with

D ≤ 4 compatible with the chosen set of symmetries, allows the theory to be renormalizable at all

orders. This, in turn, allows the theory to be predictive for precision observables, thanks to the fact

that at any order in perturbation theory, one will need only the counterterms coming from the tree

level lagrangian. his means that one only needs to perform a number of measuremenets equal to the

number of paramaters of the bare lagrangian, and loop corrections will deliver precision predictions

about the theory.

In a non-renormalisable theory, at every order in perturbation theory, new operators get added

to the lagrangian, requiring to add more counterterms and perform more measurements at each stage.

The theory can still make predictions at low energies, however one can always fix any disagreement

of the theory with experiment by going one level more in perturbation theory and fitting any new

experimental data that was not agreeing with the model at N loops with aN parameters, with the

model at N + 1 loops and aN+1 > aN paremeters.

2.6 Number of Colors

How do we know that the number of colors is 3? There are several experimental probes about the

number of colors. These include

1. The spin-statistics wave function of the ∆++ baryon, that needs to be completely anti-

symmetric, but is instead symmetric in L, S and flavour. Adding the the color degree of

freedom, only for Nc = 3 the function can be a completely anti-symmetric singlet.

2. The ratio of σ(e+e− → hadrons) to σ(e+e− → µ+µ−), that is proportional to the number of

colors Nc, as quarks appear in the final states

3. The value of the π0 → γγ decay rate, that happens through a quark loop, and as quarks

appear only as internal states, and therefore the process is proportional to N2
c

3 Young Mills Lagrangian, Mesons, Baryons

3.1 Quantum Symmetries of YM lagrangian

We want to study symmetries of YM theories, for example QCD
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L = −1

4
GaµνG

µν,a + (ū, d̄, s̄)i /D

ud
s

 (3.1)

We can rewrite the lagrangian decomposing in left and right handed fields

qi =

((
1 + γ5

2

)
+

(
1− γ5

2

))
qi =

(
1 + γ5

2

)
qi +

(
1 + γ5

2

)
qi = qi,R + qi,L (3.2)

We get the following lagrangian

(ū, d̄, s̄)i /D

ud
s

 = (ūR, d̄R, s̄R)i /D

uRdR
sR

+ (ūL, d̄L, s̄L)i /D

uLdL
sL

 (3.3)

The left and right fields do not talk to each other. Such a theory is invariant under the global

symmetry of the group

U(3)L ⊗ U(3)R = U(1)L ⊗ U(1)R ⊗ SU(3)L × SU(3)R (3.4)

The U(1) factors transform all fields of the given helicity and does not act on the fields of the other

helicity. The SU(3) factors apply SU(3) transformations to the fields of the given helicity (thus

mixing up different flavours) and do not act on the fields of the other helicity.

qL → eiαqL U(1)L (3.5)uLdL
sL

 → UL

uLdL
sL

 SU(3)L (3.6)

The symmetry group can be rewritten as

U(3)V ⊗ U(3)A = U(1)V ⊗ U(1)A ⊗ SU(3)V × SU(3)A (3.7)

U(1)V acts on all quarks with same phase shift

q → eiαq (3.8)

This symmetry is exact and is called U(1)B barion number conservation. The SU(3)V is an SU(3)

transformation acting in the same way for left and right handed components

Q → UQ (3.9)

Q =

ud
s

 (3.10)

This symmetry would be exact even with quark masses turned on, as long as they are all degenerate.

So it is broken by quark mass differences, md−mu, 2ms−md−mu. This (approximate) symmetry

is seen in nature and is called SU(3)F . The subgroup with only the u, d quarks is called SU(2)F
or isospin symmetry. Before discussing the axial symmetries, we need to discuss the Goldstone

theorem.
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3.2 Goldstone Theorem and linear σ model

Let Φ be a real scalar field in the fundamental repr. of SO(N). A Φ4 theory invariant under SO(N)

can be written as

L =
1

2
∂µΦ∂µΦ +

1

2
µ2Φ†Φ− λ

4
(Φ†Φ)2 (3.11)

You may notice that the mass term has the wrong sign. No worries! We will see that the theory

still makes perfectly sense. What will happen is a symmetry breaking, and some fields will need

to be rewritten, as some of them will get a nonzero vev. Taking the potential, we find the minima

condition

∂V

∂Φ
= −µ2Φ† + λ(Φ†Φ)Φ† = 0 (3.12)

→ Φ†Φ =
µ2

λ
(3.13)

Thus we need to have at least one component of the n-vector that has nonzero vev. Note that we can

take to be just one component without loss of generality, because we can always rotate the vector

by a SO(N) transformation to have all but one components with no vev. This transformation will

define the physical base. Thus

〈Φ〉 = (0, ...,

√
µ2

λ
) (3.14)

From now on, we are not more allowed to perform a generic SO(N) rotation, as the system is clearly

not invariant anymore under such transformations. What remains is an SO(N − 1) symmetry for

the first N − 1 components of Φ. We will call them Φ̃, while we will call ρ the last field component

of Φ,

Φ = (Φ̃,

√
µ2

λ
+ ρ) (3.15)

If we rewrite the lagrangian using such fields we get

L =
1

2
∂µΦ̃∂µΦ̃ +

1

2
∂µρ∂

µρ

+
1

2
µ2

(
Φ̃†Φ̃ + (

µ2

λ
ρ)2

)
+

1

4
λ

(
Φ̃†Φ̃ + (

µ2

λ
ρ)2

)2

(3.16)

=
1

2
∂µΦ̃∂µΦ̃ +

1

2
∂µρ∂

µρ− 1

2
(2µ2)ρ2 +O(S3) (3.17)

The field ρ now has a mass term with the right sign, while the remaining fields are massless and

have e remnant SU(N − 1) symmetry!

Goldstone Theorem: If a Lagrangian, invariant under a set of continuus transformations, gets

the symmetry spontaneously broken, there is a massless goldstone boson for each broken generator.

How many generators where broken?

N(N − 1)

2
− (N − 1)(N − 2)

2
= N − 1 (3.18)
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that is exactly the number of massless particles remaining in the theory!

PROOF We want to proove that, ∀ continuus symmetries of L that are not a symmetry of

the minimum, then

Mab =
∂V

∂φa∂φb
(φ0) (3.19)

has a zero eigenvalue. The symmetry can be expressed as a infinitesimal tranformation

φa → φa + αRabφb, α� 1 (3.20)

We take φ as constant, so a symmetry of L is a symmetry of V . The invariance of V means that

V (φa) = V (φa + ∆φa) (3.21)

∂V

∂φa
(φ)∆φa(φ) =

∂V

∂φa
(φ)αRacφc = 0 (3.22)

We differentiate the previous relation w.r.t φb:

∂2V

∂φa∂φb
(φ)Racφc +

∂V

∂φa
(φ)Rab = 0 (3.23)

we now spcify to the point φ = φ0,

∂2V

∂φa∂φb
(φ0)Racφc0 +

∂V

∂φa
(φ0)Rab = 0 (3.24)

∂2V

∂φa∂φb
(φ0)Racφc0 = MabR

acΦc
0 = 0 (3.25)

where the second equation is obtained using the fact that the gradient of the potential is zero at the

minima. Now, the number of nonzero components Racφc0 is equal to the number of broken generators

Rac, i.e. generators for which

RacΦc 6= 0 (3.26)

These are all linearly independent components, and as all components of

MabR
acΦc

0 (3.27)

are required to be zero, it follows that the matrix Mab needs to have the same number of zero

eigenvalues as the number of broken generators.

Effective Potential: radiative (loop) corrections modify the shape of the potential. However,

one can show that the Goldstone Theorem remains valid at all levels of perturbation theory.

3.3 Light quarks flavour symmetries and quasi-Goldstone bosons

We can now go back to consider the symmetries of our lagrangian. We need to acknowledge first an

important fact: the fact that αQCD hits a pole at low energy has the important consequence that

quarks bilinears develop what is called quark condensate

〈0|q̄jqi|0〉 = O(Λ3
QCD)δij (3.28)

– 24 –



Such condensate can potentially break spontaneusly some of the symmetries of our lagrangian. Now

we can start considering back the symmetries of our larangian. As we anticipated, U(1)V = U(1)B
is a symmetry of the lagrangian and remains unbroken. Regarding SU(3)V = SU(3)F , once again as

we anticipated this symmetry is approximate. It is hardly broken by the mass differences of quarks,

|mu −md| and |ms − mu+md
2 |, but is not broken by the quark condensate, as

O(Λ3
QCD)δij = 〈0|q̄jqi|0〉 → 〈0|q̄jU †Uqi|0〉 = 〈0|q̄jqi|0〉 = O(Λ3

QCD)δij (3.29)

the symmetry is approximately realised as both quark mass differences are smaller than ΛQCD, that

is the relevant scale for the theory

|md −mu| � ΛQCD, |ms −
mu +md

2
| . ΛQCD (3.30)

Once again, a the first mass difference is much smaller than ΛQCD, the SU(2) isospin symmetry is

more exact than the flavour SU(3). Now, we can start discussing the axial symmetries. SU(3)A is

an approximate symmetry of the lagrangian, as it is hardly broken by the quark masses (not their

differences), but, more importantly, it is spontaneously broken by the quark condensate, as

O(Λ3
QCD)δij = 〈0|q̄jqi|0〉 → 〈0|q̄R,jUUqL,i|0〉+ 〈0|q̄L,jU †U †qL,i|0〉 6= 〈0|q̄jqi|0〉 (3.31)

As we have 8 broken generator, we would expect 8 goldstone bosons. But as the symmetry is only

approximate, we expect 8 quasi-goldstone bosons, whose mass term is expected to be proportional

to the quark masses, so that it would go to zero is the symmetry was a proper symmetry of the

lagrangian, just spontaneously broken by the quark condensate. So we expect them to be ”light”.

This is called the meson octet, shown in Fig. 11.

Figure 11: Meson Octet

Experimentally we find 9 particles with similar propertis, we associate them to the meson octet

plus singlet. Their properties are listed in Tab. 1.
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Particle Quarks Mass MeV Lifetime (s)

π± ud̄ 140 10−8

π0 uū− dd̄ 135 10−16

K± us̄ 494 10−8

K0/K̄0 ds̄ 498 10−8/10−11

η uū+ dd̄− 2ss̄ 548 10−19

η
′

uū+ dd̄+ ss̄ 958 10−21

Table 1: List of mesons in the meson octet and singlet.

There are 2 principal methods to explore non-perturbative effects of QCD. One is by using the

so called Lattic QCD, where one tries to solve the equations of QCD on a lattice. The second is by

using symmetries of the theory to build an effective lagrangian, this is called Chiral EFT. Using this

approach, we get the following approximate relation for the meson masses, that try to explain the

mass pattern

m2
ab =

2σ

f2
π

Tr[τa,maτ
b] (3.32)

where ma is tha quark mass matrix, τ are the SU(3) generators, fπ is the pion decay constant, not

predicted by the theory, and σ is related to the value of the quark condensate. We get

m2
π =

2σ

f2
π

(mu +md) (3.33)

mK± =
2σ

f2
π

(mu +ms) (3.34)

mK0 =
2σ

f2
π

(ms +md) (3.35)

mη =
2σ

f2
π

mu +md + 4ms

3
(3.36)

There are still several unresolved questions

1. Why the lifetime of the neutral pion is so much shorter than the ones of charged pions?

2. Why the neutral pion mass is not exactly the same as the ones of neutral pions, as predicted?

3. Why the singlet is much heavier than the mesons of the meson octet?

4. What about baryons? Are they goldstone bosons as well?

We will need to learn about anomalies to answer some of these questions, we can anticipate a few

answer, however Regarding the barions, no they are not goldstone bosons, they would be massive

also for massless quarks. We will not give a proof of this, but is related to the fact that they have

non-zero baryon number. Regarding the mass of the singlet, the reason is that η
′

is not a Goldstone

boson of the U(1)A symmetry, because such symmetry is not spontaneously broken as expected. in

fact, we will see that such symmetry does not even exist, as is broken at the quantum level. This is

called anomalous symmetry.
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3.4 Quantum Anomalies

This subsection is here only for completeness, and will not be discussed at lecture,

apart from the last part with the final result

We will see that η
′

s not a G.B. because Jµ5 is a current whose conservation is spoiled by

quantum corrections, so we say it is anomalous. So the relative symmetry is not a symmetry of the

action. No generators get spontaneusly broken, so there not G.B. originating. η
′

mass is generated

by non-perturbative effects and would not go to zero for massless quarks.

3.4.1 Understanding anomalies

In a free fermion theory, the lagrangian of the free fermion, Ψ, can be divided in the one for the left

handed component and the one for the right handed component:

L = Ψ̄i/∂Ψ = Ψ̄i/∂ (PR + PL) Ψ = Ψ̄Ri/∂ΨR + Ψ̄Li/∂ΨL (3.37)

In this case, one has 2 separete conserved currents, indicating that the number of left handed

fermions and right handed fermions is separately conserved. The left and right handed currents can

be recasted into

Jµ = ΨγµΨ (3.38)

Jµ5 = Ψγµγ5Ψ (3.39)

When adding interactions with a gauge boson, however, things change. We will be interested

in expectation values of such currents in the presence of the external vector field, and in particular

they divergency/conservation

∂µ〈A|Jµ|A〉 (3.40)

∂µ〈A|Jµ5|A〉 (3.41)

If the current we are taking the expectation value of is a current associated to a gauge symme-

try/boson, it has to be conserved. From the Ward identity, we expect the divergency of such

expectation value to be zero, otherwise it would break gauge invariance.

if the current we are taking the expectation value of is associated to a global symmetry, a

nonzero expectation value will just mean that such symmetry is spoiled at the quantum level.

Anomalies come from a specific class of diagrams, the ”triangular diagrams” where one has

fermions running in a loop, with 3 vertices for interactions. We start from the case where interactions

are with a gauge boson. We know the QED case where the interaction have the form

eQγµ (3.42)

and QCD where they have the form

gst
aγµ (3.43)

The QED current is therefore

JµQED =
∑
f

Qf f̄γ
µf (3.44)
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and the QCD one is

Jµ,aQCD =
∑
f

f̄γµtaf (3.45)

There are both currents associated to local symmetries. regarding currents associated to global

symemtries, we have the axial current of U(1)A

Jµ5 =
∑
q

q̄Rγ
µqR −

∑
q

q̄Lγ
µqL (3.46)

and the SU(2)A or SU(3)A currents

Jµ5a = Q̄Rγ
µtaQR − Q̄LγµtaQL (3.47)

where now Q = (u, d) for SU(2) or Q = (u, d, s) for SU(3).

We can start by considering QED with just the electron. One can check that the relative

triangle diagram dotted with momentum, so the divergency of the current, is zero. this happens

because all vertices are ∝ γµ. We know that QED preserved parity. We now consider an U(1) gauge

theory with chiral interactions. For example we can consider a single right-handed fermion, with

charge 1. The new diagram will be proportional to

〈A|Jµ|A〉 ∝ Tr [γµPR/kγ
νPR/kγ

ρPR/k] ενερ (3.48)

= Tr [γµ/kγν/kγρPR/k] ενερ (3.49)

where /k just stands for some factor coming from numerators of fermion propagators, and we just

used commutation relation and P 2
R = PR. Moreover, as we know that the divergency of the diagram

with just γµ factors vanishes, it means that only the factor with γ5 can have a nonzero divergency:

∂µ〈A|Jµ|A〉 ∝ qµTr
[
γµ/kγν/kγργ5/k

]
ενερ = qµMµ 6= 0 (3.50)

we will see that indeed this diagram has nonzero value. This would indeed break gauge invariance

of the theory, making it not consistent. if, however, we have multiple particles in the theory, with

general charges QF then

∂µ〈A|Jµ|A〉 ∝ qµMµ

∑
fR

Q3
FR
−
∑
fL

Q3
FL

 (3.51)

For QED, one has an equal number of left and right handed particles, with equal charge, so that

∂µ〈A|Jµ|A〉 ∝ qµMµ

∑
fR

Q3
FR
−
∑
fL

Q3
FL

 = qµMµ

∑
f

Q3
FR
−Q3

FL

 = 0 (3.52)

So, while the diagram is not zero, the overall group factor coming out of the sum over all fermions

in all representations can be zero, making the current preserved.

Given the value of qµMµ, we will see that the kind of anomalies that matter are

local3 (3.53)

global × local2 (3.54)

The first kind would spoil gauge invariance and make the theory inconsistent. The second kind

would spoil the global current, making it not conserved. if the current was associated to a would-be

goldstone boson, then that particle is not a goldstone boson due to the anomaly. In such case, the

very same diagram allows the decay of such particle into a couple of gauge bosons.
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3.4.2 Anomaly of Axial current

We now want to calculate the divergence of the Jµ5 current. it is given by 2 diagrams in Fig. 12.

We can neglect the fermion masses.

Figure 12: Diagrams contributing to anomaly

iJµ = −(−ie)2

∫
d4l

(2π)4
Tr[γµγ5 i(/l − /k

(l − k)2
γλ
i/l

l2
γν
i(/l + /p)

(l + p)2
] + (p, ν)

(←→ k, λ) (3.55)

∂µJ
5,µ = iqµJ

µ (3.56)

/qγ
5 = (/l + /p− (/l − /k)γ5 = (/l + /p)γ

5 + γ5(/l − /k) (3.57)

∂µJ
5,µ = e2

∫
d4l

(2π)4
Tr[γ5 /l − /k

(l − k)2
γλ

/l

l2
γν + γ5γλ

/l

l2
γν

/l + /p

(l + p)2
] + (p, ν)

(←→ k, λ) (3.58)

= e2

∫
d4l

(2π)4
Tr[γ5 /l − /k

(l − k)2
γλ

/l

l2
γν − γ5 /l

l2
γν

/l + /p

(l + p)2
γλ] + (p, ν)

(←→ k, λ) (3.59)

Now, one would be tempted to say that the result is zero, cause if I shift the first part by

lµ → lµ + kµ (3.60)

one gets a result that is asymmetric in the interchange, and therefore the 2 diagrams would cancel.

But we can’t make that shift! Because the integral is badly divergent. By power counting 4+2−4 =

2 is quadratically divergent. The shift might not be allowed by dimensional regularization in d

dimensions. To go to d dimensions, we need a d dimensional definition of γ5, that is an object that

is strictly 4-dimensional. We use

γ5 = iγ0γ1γ2γ3 (3.61)

{γ5, γi} = 0, i = 0, 1, 2, 3 (3.62)

[γ5, γi] = 0, i ≥ 4 (3.63)

We decompose l as the sum of the first 4 dimensions l‖ and the additional dimensions l⊥.

l = l‖ + l⊥ (3.64)

then

/qγ
5 = (/l + /p− (/l − /k)γ5 = (/l + /p)γ

5 + γ5(/l − /k)− 2γ5l⊥ (3.65)
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and the previous result is modified accordingly. Now we can perform the shift, and the additional

term survives

= e2

∫
d4l

(2π)4
Tr[−2γ5/l⊥

/l − /k
(l − k)2

γλ
/l

l2
γν

/l + /p

(l + p)2
] + (p, ν)

(←→ k, λ) (3.66)

Now, as usual we combine denominators and sfift the momentum

l→ l + xk − yp (3.67)

because of the γ5 factor, we need 4 different (not parallel) vectors in the first 4 dimensions to get a

nonzero trace. There is only one surviving term

= e2

∫
d4l

(2π)4

Tr[−2γ5/l⊥(−)/kγλ/l⊥γ
ν/p]

(l2 −∆)3
+ (p, ν)

(←→ k, λ) (3.68)

now, /l⊥ commutes, so

= e2

∫
d4l

(2π)4

Tr[−2γ5/l⊥/l⊥(−)/kγλγν/p]

(l2 −∆)3
+ (p, ν)

(←→ k, λ) (3.69)

= 2e2Tr[γ5/kγλγν/p]

∫
d4l

(2π)4

l2⊥
(l2 −∆)3

+ (p, ν)
(←→ k, λ) (3.70)

= 2e2d− 4

d
Tr[γ5/kγλγν/p]

∫
d4l

(2π)4

l2

(l2 −∆)3
+ (p, ν)

(←→ k, λ) (3.71)

= 2e2d− 4

d
Tr[γ5/kγλγν/p]

(
i

(4π)d/2
d

2

Γ
(
2− d

2

)
2

1

∆2− d
2

)
+ (p, ν)

(←→ k, λ) (3.72)

= − ie2

(4π)d/2
Tr[γ5/kγλγν/p]

1

∆2− d
2

+ (p, ν)
(←→ k, λ) (3.73)

= − ie2

(4π)2
i4εαλβνkαpβ + (p, ν)

(←→ k, λ) (3.74)

=
e2

2π2
εαλβνkαpβ (3.75)

= − e2

16π2
〈p, k|εαλβνFανFβλ|0〉 (3.76)

This is called the Alder-Bell-Jackiw anomaly.

For any 3 symmetries of the lagrangian, we can associate the relative anomaly given by triangle

diagrams with fermion loops. This is something we want to keep in mind for later on, when we will

check that the SM gauge symmetries are not broken by anomalies. We can therefore calculate the

U(1)A ×G2 anomaly for any symmetry group G.

One can perform the same computation in the case of 2 external gluons, rather than photons.

The result is the same as for QED, with the addition of a group factor (and summing up over

flavours)

∂µJ
5,µ = − g2

3

16π2
Tr[tatb]Tr[1F ]Gµνa Gb,µν = −

g2
3Nf

32π2
Gµνa Ga,µν (3.77)
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3.5 Consequences of Anomaly on Global symmetries

We now check if the currents Jµ5 and Jµ53 are spoiled by coupling the quarks to gluons. So the

relevant diagrams are

Jµ5 × SU(3)2
c (3.78)

Jµ53 × SU(3)2
c (3.79)

As the single diagram is not zero, we need to just check the group factor. For Jµ5, every right handed

particle has a ”charge” QR = +1/2, while every left handed particle has a ”charge” QL = −1/2.

The overall factor is ∑
f

Tr[tatb]
∑
q

(QR −QL) = Nf
δab

2
× 1 =

NF

2
δab 6= 0 (3.80)

as we had just seen in the previous section. So the current has a QCD anomaly. his means η
′

is not

a GB. As a first consequence, we expect therefore that the mass of such particle depends completely

on the non-perturbative scale ΛQCD, and not on the quark masses, so it should be considerably

higher. This replies to our question 3.

For the other current, we can use the vector form of quarks, and the matrix for t3 is the

generator. The left-handed particle however transform with the inverse matrix, so get a factor −t3

the group factor is

Tr[tatb]
(
TrR

[
t3
]
− TrL

[
−t3
])

= Tr[tatb]Tr
[
t3
]

= 0 (3.81)

So the neutral pion has no QCD anomaly - it is a GB!

Now we add interactions with the photon and we turn to anomalies with the QED photon, so

Jµ5 × U(1)2
em (3.82)

Jµ53 × U(1)2
em (3.83)

The 2 group factors in this case are

Nc

∑
f

Qf,A,RQ
2
f,R −Qf,A,LQ2

f,L =
Nc

2

∑
f

Q2
f,R − (−1)Q2

f,L = Nc

∑
f

Q2
f (3.84)

Nc

(
TrR

[
t3Q2

R

]
− TrL

[
−t3Q2

L

])
= 2NcTr

[
t3Q2

]
= Nc

1

2

(
Q2
u −Q2

d

)
=
Nc

6
(3.85)

Both coefficients are non-zero, so this means both currents develop an anomaly with U(1)em that

allows the relative particle to decay to 2 photons. . The existence of the anomaly with the EM

gauge group generates a non-zero coefficient for the operator

π0εαλβνFανFβλ = π0FµνF̃µν (3.86)

This comes one summing up over all flavours

∂µJ
5a,µ = − e2

16π2
Tr[taQ2]Tr[1c]F

µνFµν = − e2

32π2
FµνFµν (3.87)
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Such operator allows the neutral pion to decay by EM interaction, so

Mπ0 ∝
e2

16π2
(3.88)

The charged pions, instead, do not suffer from the U(1)A × U(1)2
em anomaly. They are therefore

stable under the EM interaction, and can only decay through the weak interaction, meaning that

their decay rate will be

Mπ+ ∝ e2 m
2
π

M2
W

∼ 10−6e2 ∼ 2.5× 10−4Mπ0 (3.89)

So as a first rough estimate one would get, for the neutral pion

Γπ± ∼ 10−7Γπ0 (3.90)

This factor is not precise, as that requires to perform a full calculation of the matrix element, but

it is however of the right order of magnitude and approximately explains the relative ratio of the

decay rates. This answers our question 1.

Regarding question 2, we can notice that we have defined a flavour symmetry were all quark

flavours belong to the same representation. particles living in the same representation should all

have the same quantum numbers, w.r.t the symmetries of the lagrangian. This is correct if one

includes only QCD interaction in the lagrangian. If one tries to account for EM interactions in

the lagrangian, however, the flavour symmetry breaks, as u and d have different electric charge. It

is therefore expected that neutral and charged pion cannot have exactly the same mass, with the

difference being in part due to EM interactions, and in part coming already in the case of exact

flavour symmetry, as using the relation 3.32 one gets a mixed term m2
38 = m2

π0η that causes a mixing

between them and changes the value of the mass eigenvalues by O(2σ
f2π

3(mu+md)
4ms+mu+md

). This is our reply

for question 2.

There are other questions that one could raise by looking at Tab.1. The most interesting one

is related to the neutral kaons k0, K̄0, their mass and their decay times. This is an interesting topic

related to CP breaking in the SM, but we will not cover this in the course.
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