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1 Gauge boson terms

1.1 Covariant Derivarive

1.1.1 Abelian Case

We consider a fermion field Ψ with electric charge Q. We will say that Ψ belongs to the Q repre-

sentation of U(1), and it will transform as

Ψ→ eieQα(x,t)Ψ (1.1)

An arbitrary phase shit that depends on the space-time point is not problematic for Ψ̄Ψ terms,

as

Ψ̄Ψ→ Ψ̄Ψ (1.2)

The terms that have a problem are the ones involving a derivative. The derivative along a

direction nµ is

nµ∂µΨ = lim
ε→0

Ψ(xµ + εnµ)−Ψ(xµ)

ε
(1.3)

This is a difference of Ψ at DIFFERENT space-time points, that means the difference of fields

that transform differently under the phase shift, as the first one will acquire a phase eα(xµ + εnµ),

while the second will acquire a phase eα(xµ). To obtain an object that transforms correctly, we need

to define a transport operator

U(y, x) → eieQα(y)U(y, x)e−ieQα(x) (1.4)

U(x, x) = 1 (1.5)

‖U‖ = 1 (1.6)
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where the last equation means that U can (should) be takes as a pure phase. Following what we

have seen so far, we can see that a good choice can be

U(y, x) = eieQ
∫ y
x Aµdl

µ
(1.7)

Using this operator we get that

U(xµ + εnµ, xµ)Ψ(xµ) (1.8)

transforms in the same way as

Ψ(xµ + εnµ), (1.9)

so we can define

nµDµΨ = lim
ε→0

Ψ(xµ + εnµ)− U(xµ + εnµ, xµ)Ψ(xµ)

ε
(1.10)

= lim
ε→0

Ψ(xµ + εnµ)− eieQεnµAµΨ(xµ)

ε
(1.11)

= lim
ε→0

Ψ(xµ) + εnµ∂µΨ(xµ)− (1 + ieQεnµAµ)Ψ(xµ)

ε
(1.12)

= nµ (∂µ − ieQAµ) Ψ(xµ) (1.13)

so

Dµ = ∂µ − ieQAµ (1.14)

Exercise Imposing that this object transforms like Ψ, find the transformation law for Aµ.

1.1.2 Non-Abelian Case

The field Ψ now belongs to a representation space of SU(N), for example the fundamental one, and

will have a group index a (in other words, it can be seen as a column vector).

The operator U still needs to be a unitary operator, belonging to the non-abelian gauge group,

so:

U(y, x) = eig
∫ y
x dl

µ(Aaµt
a), (1.15)

where Aaµ are a set of fields belonging to the adjoint representation of SU(N) and ta are the SU(N)

generators.

All the previous steps still apply, as we have assumed nowhere that U was a c-number. So

Dµ = ∂µ − igAaµta (1.16)

Exercise What are the transformation laws for Aaµ?
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1.2 Field Strength Tensor

Given that Dµ has nice transformation properties, we want to use this object to contract other

operators that still retain such nice transformation properties. In the abelian case, we note that

Dµ → UDµU
† (1.17)

U(x) = eieα(x) (1.18)

[Dµ, Dν ] = −ieFµν (1.19)

Fµν → UFµνU
† = Fµν (1.20)

Similarly, we can do the same for the non abelian case

Dµ → UDµU
† (1.21)

U(x) = eigα
a(x)ta (1.22)

[Dµ, Dν ] = −igFµν (1.23)

Fµν → UFµνU
† (1.24)

however this time Fµν will not be invariant, but will just transform ”in the right way” under

gauge transformations.

1.3 Kinetic Terms

In the Abelian case, given the invariance of Fµν , together with the fact that it was a c-number, one

was taking

L = −1

4
FµνF

µν (1.25)

In the non-Abelian case, Fµν is not invariant, and is not a c-number, but a matrix. We need

to construct an an invariant object that is also a c-number out of it. We note that

FµνF
µν → UFµνF

µνU † (1.26)

So, the only possible choice is

L = −1

2
Tr[FµνF

µν ] = −1

4
F aµνF

µν,a (1.27)

F aµν = 2Tr[Fµνt
a] = ∂µA

a
ν − ∂νAaµ − igTr[[Abµ

tb

2
, Acν

tc

2
]ta] (1.28)

= ∂µA
a
ν − ∂νAaµ + gfabcA

b
µA

c
ν (1.29)

Exercise Use the transport operator U to find Fµν .

1.4 Color

Gell-mann matrices can be associated to color carried by gluons, and color is conserved at each vertex.

Exercise Find all Gluon-matries correspondences, as in Fig. 1.
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Figure 1: Example of gluon-matrix correspondence

Gluon-Gluon vertices

The arise from the 3 and 4 gluon terms of

(F aµν)2 =
(
∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν

)2
(1.30)

For the 4-gluon vertex we get

L = g2fabcA
b
µA

c
νfadeA

µ,dAµ,e (1.31)

so the feynman rule reads

(−i)g2fabcfade (gµρgνσ + permutations) (1.32)

Exercise Find the F.R. for the ggg vertex. Note: beware of the sign of the momenta! Use the

expression for Aµ in terms of creation and annihilation operators to work them out correctly! Take

all the momenta to be ingoing.

1.5 Gauge Group and Yang-Mills Lagrangian

The first thing one needs to introduce when defining a particle physics model is the gauge group.

The SM gauge group is

SU(3)c × SU(2)L × U(1)Y (1.33)
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F SU(3) SU(2) U(1)

QL 3 2 1/6

uR 3 1 2/3

dR 3 1 −1/3

LL 1 2 −1/2

eR 1 1 −1

Table 1: Standard Model Fermion field content

Following our section on Gauge invariance for Abelian and non-Abelian gauge groups, the

relative kinetic terms for the gauge bosons is

L = −1

4
BµνB

muν − 1

2
Tr[WµνW

µν ]− 1

2
Tr[GµνG

µν ] (1.34)

= −1

4
BµνB

muν − 1

4
W a
µνW

µν,a − 1

4
GaµνG

µν,a (1.35)

2 Fermion (Dirac) terms

2.1 Fermion Content and Fermion kinetic terms

The next step is to define the field content of the theory. We start from the fermion content. For the

SM, the fermionic field content is, with each field assigned to a specific gauge group representation.

This is done for the SM in Tab. 1. This uniquely defines the covariant derivative for each field. The

kinetic term of the lagrangian is exacily obtained as

L = Q̄Li /DQL + ūRi /DuR + d̄Ri /DdR + L̄Li /DLL + ēRi /DeR (2.1)

Note that left and right fields are separated here. This is necessary because parity is not

conserved by weak interactions, as discovered by Madame Wu in 1956. However, this raises up some

problems, as we will see in the next sections.

References

– 5 –


	Gauge boson terms
	Covariant Derivarive
	Abelian Case
	Non-Abelian Case

	Field Strength Tensor
	Kinetic Terms
	Color
	Gauge Group and Yang-Mills Lagrangian

	Fermion (Dirac) terms
	Fermion Content and Fermion kinetic terms


