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Outline for these lectures

Evidence for dark matter

Dark matter freezeout and relic density

Dark matter candidates (WIMPs, asymmetric DM, sterile neutrinos, axions....)
Indirect Detection

Dark matter searches at colliders

Direct Detection

Dark matter in stars
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Dark Matter Lecture #1
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Atoms Dark

Dark matter properties 6% Energ
Dark P
* 24% of the energy-density of the universe Maartter
(about 84% of the total matter) 24%

* Dark = does not radiate/absorb/scatter light
—> electrically neutral (at least to a good approximation)

* Cold = non-relativistic by he era of cosmological structure formation

* Matter = gravitates/redshifts like matter. Behaves cosmologically like pressureless dust.

* Forms the scaffolding for the growth of structure in the universe. Present as halos
around galaxies and clusters.

* Non-gravitational interactions are sufficiently weak that they have not yet been detected.
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Evidence for dark matter

Astrophysical observations, on all scales, consistently point to the need for dark matter
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Galaxy rotation curves

v_z _ GMgalaxy
R R?

Observations

21 cm hydrose

Galaxy rotation curves = there is more matter in galaxies than accounted for by stars/gas.
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Cosmic microwave background

Angular scale
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The CMB spectrum allow a precision determination of the baryonic matter and dark
matter abundance of the universe.

Canberra International Physics Summer School 2023 — ANU - January 2023 — Nicole Bell, U.Melbourne




Growth of Structure

All viable model of structure formation are dominated by cold dark matter.

Structure formation begins with the formation of small structures, which merge to
form larger structure.
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Cold dark matter

Dark matter is (at least approximately) “cold” = non-rel. by the era of structure formation
= dark matter cannot be neutrinos (or other light relativistic particles) because they would
“free-stream” from overdense regions, damping the growth of structure
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Gravitational Lensing

Galaxy cluster Abell 370 Image Credit: NASA/ESA

The lensed images act as probes of the matter distribution in the galaxy cluster
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Bullet cluster

Red
—> X-rays trace the ordinary matter

Blue
- inferred dark matter distribution

Implies that dark matter particles
are non-interacting.
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What is Dark Matter?

o Could it be dark clumps of ordinary (baryonic) matter? No, because:
- BBN & CMB measure the baryonic matter abundance very well
- MACHOs (Massive Compact Halo Objects) disfavoured by gravitational lensing

o Maybe we don’t understand gravity very well?
o Proposals such as MOND (Modified Newtonian Dynamics) fail to eliminate the need

for dark matter on all astrophysical scales.
o Neutrinos or other known particles? >No

o Primordial black holes = possible over a narrow black hole mass range. But, difficult to
obtain the right PBH abundance from models of inflation.

o A new type of particle or particles - the favoured explanation
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Well motivated particle candidates:

Dark matter density ~ 5 x ordinary matter density

Similar abundances seem highly unlikely, unless the dark and visible sectors were coupled
in some way = prospects for detection of particle interactions.

Some of the most plausible particle models:

 WIMPs (Weakly Interacting Massive Particles) — connected to new GeV-TeV scale physics
e Axions — motivated by the Strong CP problem

* Sterile neutrinos — new physics is required in the neutrino sector

 Asymmetric dark matter — connection between dark matter and baryon asymmetry

Canberra International Physics Summer School 2023 — ANU - January 2023 — Nicole Bell, U.Melbourne



Dark Matter mass
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Weakly Interacting Massive Particles (WIMPs)

Dark matter freeze-out abundance:
2
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“WIMP Miracle”:

Correct relic density via thermal freezeout:
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Freezeout and relic density

(1) Dark matter initially in thermal equilib:
X + x < regular matter 001

Equilibrium curve

(2) Universe cools and the non-relativistic DM £ 1o ob
is Boltzmann suppressed: 2 1e-10

NN(mT)3/Ze—m/T Z 1e-12

< gv == 107" cm?/s

Abundance
ﬁ[..t_-'.h: s -],l'll STV =

= gy == (26 cm3‘f5

<gv>=10cm?fs

(3)“Freeze out” at m/T~20. ha

1
N = constant « —r
(GAU) my [T

- Dark matter relic abundance proportional to inverse of the annihilation cross section.
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Computing the DM relic density

Consider DM particles y self annihilating with SM fermions as: Y X < ff

(Up to factors of 2, the calculation is the same for yy particle-antiparticle annihilation,
assuming particle-antiparticle asymmetry, Ny =Ny = n)

Boltzmann for the particle number density, n:

dn
— 2 2
i —3Hn (o v)(n* — ng,)
a
where H = Hubble expansion parameter = o where a = scale factor of the Universe

v =relative velocity of annihilating DM,
(o4v) = thermally averaged annihilation cross section
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Computing the DM relic density

n
= —3Hn (ov)(n® — ng,)

where number density of DM particles is related to phase space distribution as:

n=g[ S5 )

and the thermally averaged annihilation cross section is

d3 d3
<OVU> = f P1 P2

(2m)3 Y (2m)3 vo_)()(—>fffeq (pl) feq(pz)

2
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n . 2172
where s = entropy density = p;p = :5 GusT3

Introduce new variable: Y = ;
T = temperature, g, = entropy degrees of freedom

and change variables from t to x = %

The Boltzmann eqn now becomes:
x dY <OV>Neq (Yz 1) Y becomes constant when <ov>n,, = H

an =TT g Yezq i.e. when annihilation rate = expansion rate

Now integrate numerically (or do analytic approximation) to find:
3% 107%7 cm3s~1

h? ~
X <ov>

QXhZzO.1 therefore < ov >~ 3 X 107 %°cm3s~1
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WIMPs and WIMP-like miracles

2
Aweak 10—26 CmSS—l

Thermal freezeout suggests the electroweak-scale since: {(ov) ~ (100 GeV)?

- A compelling benchmark, esp. given other motivation for new physics at the GeV-TeV scale.

2
1 my

(ov) g%

But, in fact, any parameters that satisfy (1, would work (“WIMPless” miracle)

However, the mass range for WIMP-like DM is well-defined:
= <100 TeV (to avoid the Unitarity limit)

= >1 MeV (to avoid problems with big bang nucleosynthesis)
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S-wave VS p-Wwave

It is useful to expand the annihilation cross section in terms of velocity, v:
<ov> = a + bvZ + O(v9)
a term: s-wave ([=0) annihilation

b term: p-wave ([=1) annihilation

To obtain this result, expanding the cross section in terms of partial waves ([ eigenstates).

e [t partial wave contribution to the amplitude ~ k!, where k is the CoM 3-momentum

2..2 2..2
. . ms,v msv
e |nthe non-rel limitk? = E? — m)z( — (4fv2) ~ )i

» v = 1073c in the galaxy, so only the s-wave contribution is significant for indirect detection.
» In the early universe (at DM freezeout) v is bigger, so both terms important.
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Unitarity limit — upper limit on thermal WIMP mass

Starting from the optical theorem: [ dB(2m)*6*(py — pg)|Age| = 2IMm Ay,
(which follow from unitarity of the scattering matrix).

One can derive an upper limit on the total inelastic cross section, for each partial wave
contribution:

_4An(2/+ 1)

(Uvrel){otal < <0vrel>{nax — Griest &

m)z(vrel Kamionkowski

Taking the s-wave term, and setting : {oV)thermar ~ 3 X 10726 cm3 /s < {(0V) gy

We obtain an upper limit on the mass of thermal relic DM: m, < 100 TeV
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BBN — lower limit on thermal WIMP mass

Big Bang Nucleosynthesis (BBN)production of light elements constrains the particle
content of the Universe at a temperature of order keV-MeV.

Number of relativistic degrees of freedom usually parameterized in terms of an
effective number of neutrino species:

Ngg = 3.046 (in the Standard Model)
off < 3.3-4 from BBN

7 ( 4 \*3

=Py Tg\11

For dark matter contribution to N to be consistent with BBN, need mpy > 0(MeV)
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Big Bang Nucleosynthesis

Temperature of Universe ~ MeV
The universe is radiation dominated (photons, neutrinos), plus electrons, positrons, and
a small amount of baryons and dark matter.

Neutron to proton ratio set by weak interaction the processes like:

n+eteop+v, n <_(m"_mp)>

= —=exp
nep+v,te p T

If there were extra radiation
— The universe would expand faster

- Weak interaction rates which convert neutrons to protons would freeze-out earlier
— Larger neutron/proton ratio 2 more Helium
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Chemical vs thermal decoupling

** The DM relic density ceases to track the equilibrium density when the number changing

processes (Y < ff) become ineffective. This is chemical decoupling. The

m

2
annihilation rate is proportional to n)z( ~ (e_?) , i.e. doubly Boltzmann-suppressed.

For a non-relativistic WIMP, we have: x.; = e 20
cd

** However, the WIMPs stay in thermal contact until much later, because scattering

processes ()(f N )(f) are more frequent. This process has only a single Boltzman
suppression.

Thermal or kinetic decoupling occurs at x4 = Tﬂ ~ 200 — 10>  (large range)
cd
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Important exceptions to the standard freeze-out calc

1. Co-annihilation

2. Annihilation near a resonance

X F
om0
- \4rm 2 ° 2 12

- need to be careful with thermal average near the pole

3. Sub-threshold annihilation.
Annihilation yy < ff , with f heavier than y.

(Possible for the higher energy componenet of the y distribution, provided the mass splitting is
not too large mass.
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Including co-annihilations

If there are other dark-sector particles close in mass to the stable dark matter candidate,
the standard calculation can fail.

Consider N particles, y;, withi =1,..N
Relic density controlled by (co)-annihilations of y; and y;

Write down a set of coupled Boltzmann egns:

N
dni . eq_.eq . : :
— = —3Hn,; — <Gijvij> nin; —n; n; + 1 <> ) scattering terms
dt — !

]=

o(xixj = Xsum) isthe total rate for y;x; (co)-annihilation to SM particles
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Ultimately, we will be interested in only the total number density:
N

TLEETLL'

i=1
because the heavier particles will eventually decay to the lightest.
(i.e. x2.34.. all decay down to y; with lifetime << age of universe)

The total number density satisfies the standard Boltzmann eqn:
an . 2 2
e —3Hn — <057 v>(N* — ng,)

with an effective annihilation rate given by:

n; nj
(Gerrv) = Z(Gij”ij)nelq ne]q

Lj
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E.g., assume two dark particles, y; and y»,
my <myand A=m, —m,

o =0y e 2T [+ Am/m) 2oy, 42722 T L+ AmIm)3 oy,

The processes involving the heavier particle are suppressed (larger Boltzmann
suppression of number densities N;~(m;T)3/2e~™/T)

But, they are important if A= m, — m, is small and/or the y, x;self-annihilation
happens to be suppressed.
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Suppose the relic density is determined by the co-annihilation process y{x, —
Xsy, With yqself-annihilation cross section very small.

Indirect detection: very suppressed
* no y, left in universe today to annihilate

Direct detection: very suppressed
* X, +N—>x,+N ratevery small
* X, +N—>x,+N kinematically forbidden unless x, —x, mass gap is tiny

Collider production
* unsuppressed
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Dark Matter Lecture #2
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Detecting WIMPs

Collider searches (production)

)

q X

direct detection
N 4 (scattering)

- 4

Indirect detection (annihilation)
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Detecting WIMPs

Collider searches ( make it )
q l X

Indirect detection ( break it )

direct detection
( shake it )
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Detecting WIMPs

X
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Complementary probes of (non-gravitational) DM interactions

Dark Matter

Leptons
electrons, muons,
taus, neutrinos

Photons, Other dark
W, Z, h bosons particles

Nuclear Matter
quarks, gluons

DM DM

: : ) SM DM .
Direct Indirect Particle Astrophysical
Detection Detection Colliders Probes

SM DM DM DM
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Dark matter self interactions

¢ Dark matter should not strongly self interact.
- The Bullet Cluster
- Halo shapes (self interactions make galaxies too spherical)

¢ But some amount of self interaction is usually expected. (Typically at tree-level, but
certainly at loop level).

This is ok, and maybe even be desired:

— helps to alleviate the CDM problem of too much structure on small scales.
However, there are other solutions to this problem, including warm dark matter,
decaying dark matter, ...
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Dark Matter Indirect Detection

WIMP Dark
Matter Particles
ECM""'1 00GeV

Search for DM annihilation or decay products from regions where the
DM density is high and (ideally) astrophysical backgrounds are low.
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Indirect detection — Detecting dark matter annihilation

Indirect detection probes the dark
matter annihilation cross-section

- The most direct detect test of the
thermal-relic WIMP paradigm

/ Gamma-rays

WIMP Dark vy
Matter Particles
+ VuVe
Ecv~100GeV T
X W*/Z/q et

- Neutrinos
\. Vu

\ -
w\\
VuVe
e

+ a few p/p, d/d
Anti-matter
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Indirect detection - Detecting dark matter annihilation

Suitable sources for indirect detection signals:

* The galactic centre (of our Milky Way galaxy)
* Dwarf galaxies
* Clusters

Also:
* Diffuse extra-galactic flux
* Dark matter annihilation in the Sun/Earth/planets
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S-wave VS p-Wwave

It is useful to expand the annihilation cross section in terms of velocity, v:
<ov> = a + bvZ + O(v9)
a term: s-wave ([=0) annihilation

b term: p-wave ([=1) annihilation

= v = 103cin the galaxy, so only the s-wave contribution is significant for indirect detection.
" |n the early universe (at DM freezeout) v is bigger, so both terms important.

— s-wave typically assumed when comparing indirect detection and freezeout.
- p-wave would give very suppressed indirect signal.
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Sommerfeld enhanced annihilation

We usually calculate cross section using perturbation theory.
But, this approach breaks down in the presence of long range forces and low velocity.

In this limit, Born approximation breaks down, as the particle wavefunctions are not well
approximated by plane waves. Deformation of wavefunction for coulomb-like potential.

ax ¢ bX ¢

e

-y
-

>
>

Equivalent to formation of
short-lived bound states

¢ AU.Melbourne

42



Sommerfeld enhanced annihilation

2

: : : : : : A
Assume DM interacts with a light force carrier ¢ with fine structure constant: a,, = yy

For my = 0, annihilation cross section is enhanced by the “Sommerfeld factor”:

T[a)(/vrel
1 — e_”ax/vrel

S =

Formg # 0, the enhancement typically cut off at a value x= a,m, /mg.
(There are also resonance regions for particular (tuned) values of a,,, m, & my.)

Note the 1/v dependence of the Sommerfeld enhanced cross section.
DM at freezeout: v ~ 1/3 DM in the galaxy now: v ~ 1073

- Mechanism for boosting present day annihilation w.r.t. freezeout cross section

CANBERRA INTERNATIONAL PHYSICS SUMMER SCHOOL 2023 — ANU - JANUARY 2023 - NICOLE BELL, U.MELBOURNE



Dark matter annihilation signal

TR T ]
Annthilation Spectrum per
cross section annihilation 1021 1022 1023-1024
2 -9
Integral of HGeViem™)
(density)? along
line of sight AN
e.g. For yy—Yy, we have d—Ey =20(m, — E,)
14
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Galactic density profile
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Indirect detection — extra galactic flux
dd, (ov) ¢ 0pe f A2 dN, (E)

_ d
dE, 2 4mH, m2, ) '~ h(z) dE,

. E'
Flux produced at energy E' redshifted to E = L o m, =1GeV, NFW
" NFB, Dolan, Robles, arXiv: 2205.14123
TH 100
h(z) = [Qmo(l+2z)+ Qp0 T:
7101
g
(&}
>
Cb"’ 102 —— Beacom et al.
A? parametrises dependence on the choice of NI —— Yuksel et al.
) % S 3 Watson et al.
the Halo clustering factor. w10 Tinker ct al.
= Press-Schechter
10'4 ' R T T ] |

0.2 0.4 0.6 0.8 1.0 1.2
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Annihilation modes: O

o XX —=VY - should be loop suppressed - S _</w:

o xx = ete™ = detect electrons/positrons or, gamma rays from bremsstrahlung &

inverse Compton scattering X _
&

Note: yy —» eTe™ necessarily accompanied
by xx = ete~y “internal bremsstrahling” y

X e’

o xx — utu- - less internal brem than electrons (lighter particles radiate more)
o xx — Tttt - hadronic decays modes produce broad spectrum of photons

o XX — bb > hadronic decays modes produce broad spectrum of photons
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Annihilation spectra (y-rays):

F mpy=100 GeV

e
o
—_

dN. /dE, (GeV)
o
o

2
E‘)’

i
50.0 100.0
E, (GeV) arXiv:1004.1644

' IIIIII 'l L I l
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Buckley & Hooper
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Dark matter annihilation to y-rays - signal & background
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Indirect detection with Milky Way dwarfs
P

oo Dwarf spheroidal galaxies Ly

v dSphs are DM dominated systems (they have very high M/L ratios).
v Many dSphs are closer than 100 kpc to the Galactic Centre.
v Low background

Coma

Bootes I e
eo¢® Willman 1 » perenices

rsa Major | ° Bootes Il ®
Ursa Minor  Bootes lll Leo IV

Negligible astrophysical backgrounds Sl TS LT
- robust limits

°
Sagittarius
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Indirect detection with Milky Way dwarfs

arXiv:1601.06590
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Gamma ray lines — the smoking gun...

Fermi Gamma ray line search from 200 MeV — 500 GeV
No globally significant line signal. arXiv:1506.00013

[ T L | oo R —
P - NFWc(y=1.3) R3 7
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] = —— Obs Limit P7REP (3.7 yr, stat-only) =
O - ]
O\O = -
Tp) 29 | — .
o 107 Note: gamma ray lines
AT L . should be loop suppressed,
@) -30 | — .
v 107 thus subdominant to
- - continuum gammas.
-31
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- m, (MeV) —
13 — Nicole Bell, U.Melbourne 52




Gamma ray lines — DM decay
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CMB limits on DM annihilation

Recombination history of the universe could be modified if DM annihilations inject
energy into the photon-baryon plasma.

Limits depend on:
sthe fraction of the DM energy absorbed by the plasma

—>typical value f=0.2 (larger for annihilation to electrons)

=\/elocity dependence of the cross section
-2 If p-wave suppressed, annihilation rate is very small

Currently exclude thermal relics with m <5 GeV
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CMB limits on DM annihilation

1022 e
| —  WMAP9
[| — Current (WMAP9+Planck+ACT+SPT+BAO+HST+SN)

10_23 _ —— Full Planck temp. and pol. forecast 4
| —  CMB Stage 4 forecast | fess = fraction of energy
: Cosmic Variance Limit ]

absorped by the CMB plasma

fete ~ 0.2 for most
annihilation channels (larger
for annihilation to e+e-)

Madhavacheril, Sehgal & Slatyer,

100 101 102 103 104 arXiv:1310.3815

I M, [GeV] _
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CMB limits on DM annihilation

T. Slatyer, arXiv: 1506.03811
. | _

Very strong limits

on annihilation of
light dark matter to
electrons or photons

10° 107 10™ 10 10~ 10" 10"°
DM mass (GeV)
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Indirect detection constraints

R. Leane, et al., arXiv:1805.10305

Fermi dSph limits Annihilation to “visible” SM states
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Annihilation to neutrinos

o Indirect detection limits — typically neglect the possibility that dark matter may
annihilate to “invisible” or hard-to-detect final states.

X ] “Visible” states:
All Standard Y, 99, eTe™, ...
> Model — +
hinal states “Invisible” states:
A ’ 7]

o Can DM annihilate to neutrinos without producing charged fermions?
> Yes, e.g., “neutrino portal” models
o Annihilation to neutrinos — can we probe thermal-relic cross sections?
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Annihilation cross section limits: yx — vv

xx — v, 20 yrs, 90% CL

10-26

1 ||||||I I L] ||||||I 1 I IIIIIII L] I IIIIIIE
e—e SK 2016 NFW
- HK DR NFW .
—— SK DSNB w/o Gd = NFW
HK DSNB 10 yrs w/ Gd ] — FCu.+v,
1 — FCy,+yp,
E — PCy,+vp,
—:. PDM
3 FCv,+ 1,
E FC vy + v,
_ PCv,+v,
L IIIIIII L [ IIIIIII L 1 IIIIIII L 1 L1 1111

102

10! 100 101 102
mpm (GeV)

Thermal relic sensitivity for
DM mass of ~ 30 MeV

NFW — central lines
Isothermal — upper
Moore - lower

NFB, Dolan, Robles, arXiv: 2005.01950
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DM annihilation to neutrinos - signal & backgrounds

mpum — 50 MeV
300 [ | L I I LI I I I LI I I LI 3] |1l | L _
- _ 26 - -
550 :_ <O"U>90%CL =5.48 x 10 cm-s E FC v, 4+ 176
% Atmospheric v
S 200 = +
o - - BN Inv. g~ w/ n tag.
S 150 £ 3 "1 DSNB w/ n tag.
% E - - DM signal
é) 1001 E [ Total bkg.
50 s [ Spallation
oF || ]
10 20 30 40 50 60

NFBi DoIani Roblesi arXiv: 2005.01950
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Annihilation cross section limits: yx — vv
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Indirect detection = much of the WIMP window yet to be tested

Annihilation to “visible” SM states Annihilation to “invisible” SM states

R. Leane, et al., arXiv:1805.10305
22
10_ .F'I_I'I'I'I'I" T |l|l'1 T ||ll|'l'|'|_l_|'l'l'l'l'q T

NFB, Dolan, Robles, arXiv: 2005.01950
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Claimed indirect detection signals:

f
o
25 h
-
R

Fermi gamma ray
line at ~ 130 GeV?

b [deg]

b [deg]

Reg3
Einasto

Counts

Reg4
Contr. a=1.15

Counts - Model

20

=
=

Regd (ULTRACLEAN), E =129.8 GeV

30 b p-value=0.37, x2,=23.6/22 .

T T | T T | T T T |
[ Signal counts: 46.1 (4.360) 80.5 - 210.1 GeV |

b N . . L T

100 150 200
E [GeV]

Weniger 1204.2797, and several other groups.

A surprise! Remember, gamma ray lines are loop suppressed.
Official Fermi-LAT analysis with more data found a lower significance.
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Claimed indirect detection signals: Positrons

DM annihilation signal? Or maybe pulsars?

PAMELA e+ excess Fermi e*+e” excess
Nature 458, 607-609 Phys. Rev. Lett. 102, 181101 (2009)
[ T IIIIIII T T IIIIIII T T lllllll
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Antiprotons

(In principle, annihilation to antiparticles is a good indirect detection channel, given the low antimatter
abundance in local universe.)

X1 0-3 TTT T T T T T T 171
04 - ¥ IMAX 1992 | |
[ e Donato 2001 (D, $=500MV) 103 | ¥ FEAr-poar 2000 —— -
035 -~ Simon 1998 (LBM, ¢=500MV) - | O CAPRICE 1998 .
- Ptuskin 2006 (PD, $=550MV) L [ R 5255 polar 2004 i
0.3F ® PAMELA " | ¢ mass 1991 N i
B B o@ BESS 1995-97 T( 7
N B * BESS 1999 V1 i
0.25 | @ PAMELA |
o C o -
ic 0.2 ’=% +
0.15F 107 -
0.1F ]
0.05F 1
ol-‘ﬁ':::: | . | L1 31l 1 1 L 11 aaal
1 10 107 1 .. 10 102
kinetic energy (GeV) kinetic energy (GeV)

Antiproton data consistent with theory expectation (for secondary

— PO UCtiON Of antiprotons via cosmic ray propagation in the Galaxy). EEEEEEEEE—————
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Claimed indirect detection signal: Galactic Centre Excess

Diffuse Models

du

ce Resi

Abazajian et al,
arXiv:1402.4090

GCE Sour




Galactic Centre Excess

Extended source of 1-3 GeV gamma ray emission within ~ 1.5kpc of the Galactic Centre,
seen in Fermi-LAT data.
Spatial distribution consistent with DM distribution

Can be fit by annihilation to (for example):

= bbar with 40 GeV DM mass

= tau+tau- with 10 GeV DM mass

with a cross section roughly consistent with a thermal relic.

BUT, unresolved point sources (e.g. millisecond pulsars) can mimic this signal.

Canberra International Physics Summer School 2023 — ANU - January 2023 — Nicole Bell, U.Melbourne



Sterile neutrino dark matter

o “Sterile” (right handed) neutrinos are a viable DM candidate.
o Produced in early universe via active-sterile oscillations

o Pauli exclusion principle prevents arbitrary high number density
— dense galaxies set lower limit on mass (Tremaine—Gunn bound)

o Heavy neutrinos can decay radiatively via a loop diagram, to produce a photon line:

. 9
B _99 _1 (sin”20 ms \°
I'y(mg,0) = 1.38 x 10 S ( 10-7 ) (1 keV)

A\
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3.5 keV Xray line - decay of sterile neutrino DM?

Excess of 3.5 keV Xrays seen in Perseus, Andromeda and other
nearby clusters (Caution many nearby atomic transition lines...)

E=3.57keV =m=7eV

Bulbul et al 1402.2301, ApJ

XMM - MOS
Full Sample 1

=
=

3.57 +£0.02 (0.03)

* 1
.
el
LYY

=)
-~
|

However, no signal seen in Milky Way.

H * - Note 7 keV dark matter would be “warm”
flﬂuﬁ}hﬁ —> impact on small scale structure.
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Sterile neutrino dark matter parameter space

Subhalo
- counts limit

Horiuchi et al, 1311.0282

m [keV|
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Dark Matter Lecture #3
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R-parity NMSSM
violating

Supersymmetry

Hidden
Sector DM
Self—lnteracti

\ aaaaa

Dark Photon 3

¢

Theories of
Dark Matter

?

Light Extra Dimensions

Force Carriers v
[ —

Sterile Neutrinos \‘

o

—

Soliton DM

Quark
Nuggets,
T-odd DM .

Warped Extra
Dimensions

=

Little Higgs
QCD Axions

Image credit; Tinfaake
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Asymmetric dark matter

The density of ordinary matter and dark matter are similar: Qg4 = 5Qparyon
Is the same physics responsible for both?

Qparyon is determined by the size of the matter-antimatter asymmetry;
ng np —ng

n=-—-~—=—B.10"10

ny ny
* Suppose there were a DM-antiDM asymmetry of similar size.
—2Then we need My, = SMyypron = 5 GeV (=2 a “dark QCD”??)

* (Have replaced the question of “why similar density?” with “why similar mass?”)

Canberra International Physics Summer School 2023 — ANU - January 2023 — Nicole Bell, U.Melbourne



Asymmetric dark matter

Requirements:

= Mechanism to simultaneously create B(visible) and B(dark) asymmetries, or create an
asymmetry in one sector and communicate it to the other.

= Sufficiently large DM annihilation cross section to annihilate the symmetric part (to leave
only particles and no antiparticles).

Implications:

" Light DM.
= Suppressed indirect detection (nothing to annihilate with)
*" The physics that connects the dark and visible sectors may or may not be at an

experimentally accessible energy scale.
" Large annihilation cross section means either sizeable couplings with SM particles, or else

new light (dark) degrees of freedom.
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Define: By = baryon number
Bp = dark baryon number

Asymmetric dark matter realized by :
 breaking B in one sector, creating an asymmetry (requires the Sakharov conditions to
be fulfilled), communicating the asymmetry to the other sector.

or

* Breaking some linear combination of By, and Bp:
Byroken = By —Bp
Bconservea = By + Bp
—> creation of equal and opposite asymmetries in the dark and visible sectors.
Perhaps the most elegant version of this scenario.
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In the visible sector, all the baryons
annihilate with all the antibaryons,
leaving only the small asymmetric
component.

Similarly, asymmetric dark matter
require a sufficiently big dark matter
annihilation cross sector to annihilate
away the symmetric component, leaving
the small asymmetry.

- Need an annihilation cross section
larger than those for standard WIMPs

- Hence large interaction rates 2
detection prospects.

annihilation cross section, ov [cm’/s]

[a—
X
(S
<
[
I

2 5x107%
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symmetric relic, ny=ny
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ADM - indirect detection limits

Current limits, Future limits
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NFB, Horiuchi & Shoemaker, arXiv:1408.5142
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Dark matter models
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Effective Field Theory (EFT) operators
q

q X X
> i _( MFeq>>Q
q A X i -
IxYq qugq 1 *
Q% — M?%led M'gwd B A2

1 _
So we have a contact interaction:  Lgpr = 2 qaqaxx
eff

Advantages: - simple, model-independent description

Disadvantages: - breaks down if Q? is large or mediator is light;
- a given UV-complete model might lead to multiple EFT operators



Effective operators for fermionic dark matter

q Y Name Operator Coefficient | DD
D1 xx[f 1] myA™® | ST
D2 Fagabidi img A" | -
D3 XLf° 1] imgA™? | -
q X D4 X" XILfr° /] myA” | -
D5 | [y xlfuf] A2 sl
Contact interaction of fermionic D6 | [R7"v°x][Fvef] A2 _
DM with SM quarks or leptons: D7 | [%v*x][Frur®f] A2 _
) ) D8 |[xv*v°xlfywr°fl| AT |SD
Letr = A2 ()Z F)(X) (t Fff) D9 | [xo""x]lfouvf] A? SD
eff D10 |[xo" v x[fou f)| A2 | -
D11 Yx|[Gpn G** asA™® | SI
Ly r € {LY> vhyHy®, ot} -~ [;?% [{;WG“]V] A
D13 | [x[GuG"™] | dasA™? | -
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scattering cross section

annihilation

Cross sEction

Name Interaction Structure os1 suppression gsp suppression s-wave’?
F1 XXqq 1 g*v? (SM) No
F2 X" Xqq ¢° (DM) ¢°v? (SM); ¢° (DM) Yes
F3 XXqv°q 0 q (SM) No
F4 X+ Xqv°q 0 q (SM) * (DM) Yes
F5 XV X qyuq 1 g?v? (SM) Yes

(vanishes for Majorana X) q° (SM); ¢ or v-2 (DM)

F6 XYy’ X qyuq > (SM or DM) q° (SM) No
F7 Xy Xqu7’q ¢*v? (SM); ¢* (DM) = (SM) Yes
(vanishes for Majorana X) v2 or ¢* (DM)

F8 Xy Xqvu°q qg’v” (SM) 1 x m3/mx

F9 X" Xqouq 2 (SM); ¢* or v (DM) 1 Yes
(vanishes for Majorana X) QQ’UJ‘Q (SM)

F10 Xo"'~v° X qo,.q q° (SM) > (SM) Yes
(vanishes for Majorana X) q° or v-2 (DM)

Kumar & Marfatia, arXiv:1305.0601
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Complex scalar DM

Real scalar DM

Effective operators for scalar dark matter

Name Operator Coefficient | DD
C1 XS] myA™* | SI
C2 | IX*'XIA°f] | imgA™? | -
C3 | [x*0uxX][f"f1 | A~ |SI
C4 | Ouxllf*¥°fl| A2 | -
C5 | [x*X]|[GuwG*] | asA™? | SI
C6 | D*X[GwGH] | iasA™® | -
R1 DodLf f] myA~? | SI
R2 | [xxdlf?°f] | imsA™ | -
R3 | [xx||GuvG"*] asA™? | SI
R4 | Dx[GuG] | dasA™? | -
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Can also write down EFTs to describe DM interactions with SM gauge bosons or the Higgs boson




Models with gluon couplings D11 | [wdlCuwCG™] | asA™ |sI

D12 | [\ X[GuwG""] | dasA™ | -
D13 | [exIGumG™] | iasA™* | -
D14 | [ X[GuwG*] | asA™® | -

(dMono-jets place strong limits

I No tree-level UV completion is possible

Abdallah et al
1409.2893

CANBERRA INTERNATIONAL PHYSICS SUMMER SCHOOL 2023 — ANU - JANUARY 2023 — NICOLE BELL, U.MELBOURNE



Constraining WIMP models

s*Relic density
4

. g —
>lower limit on =% (upper limit on A ) to prevent over-closure

my

**Direct detection, collider, and indirect detection
4

—> upper limits on g—)g(lower limit on A ) to be consistent with null observations
My

In some cases, these limits are approaching. But, it is easy for a WIMP to hide:
Velocity suppressed cross sections, annihilation to dark states; light mediators; non-trivial flavour
structure of DM couplings; leptophilic DM; multiple thermal relics, non-standard expansion history, etc.

There is much work to do to fully test the WIMP parameter space.
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Effective Field

Simple
EFTs break down if

* Explicit introduction of a mediator

. 1
Theories (EFTs) = ]‘zl)ggq momentum transfer
’ \ med is > Mmed
. . Unitarity issues if
o /. | they break gauge

Simplified med invariance in the
Models ~ standard model or

q X dark sector.

Self-consistent
Simplified
Models

* May require multiple mediators
- Physics not adequately captured by a single EFT
operator or a single-mediator simplified model.
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Effective Operators for DM interactions

Name Operator Coefficient | DD

D1 xXXLf 1] myA~* | SI
. = . _3

Violate SU(2),, D2 baibd [J;f] tmy A -

D3 Dexdlf° £ img AT | -

D4 | [ f] | mgAT | -

D5 | [xy*xdfvuf] A2 | ST

Don’t necessarily violate SU(2),, D6 | [xv"v°x1fvuf] A2 -
(but can be chosen to do so) D7 | [xv*x[fvuy’f] A~ -
D8 |[xv*v’Xlfny’fl] AT |SD

Violate SU(2), D9 | [xo"Xlfouf] | A™* |SD

D10 [9_(0””75X] [faw/f] A2 —
D11 XX][Gpw G*] asA™> | SI
Be careful using this framework at energy larger D12 | [xv*X][GuG*] | iasA™® | -
or comparable to the electroweak scale! D13 | [%x][G G saah™® | =

D14 | [r°X[GuwG*] | asA™? | -
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Unitarity and Simplified Models — scalar interaction

Consider a scalar (or pseudo scalar) mediator:

This model is clearly not gauge invariant under SU(2); because:

e dark matter can couple only to a singlet scalar

» quarks couple only to SM Higgs (or other scalar with the same quantum numbers
as the Higgs)
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Scalar mediator must mix with the Higgs

Higgs portal: %AHSHTHSZ

 SM Higgs field H couples to quarks
* Singlet scalar S couples to DM

-

¥

After symmetry breaking, we have mixing of the two mass eigenstate scalars, h and s, which both\

mediate quark-DM interactions

m;
L= —zﬁflfi(hcose—ssine) — Yomix(scose + hsine)
f

/

—> Interference effects

—> Destructive interference of h and s occurs when mg ~ m;, = Blind spot for direct detection
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Unitarity and Simplified Models — axialvector interaction

Consider a model where DM couples to SM fermions X f
via a spin-1 mediator, Z’
ZI
where Z’ is the gauge boson of a new U(1) symmetry
X 7

Axial vector couplings =2 unitarity is violated at high energy

The problem is that the masses break dark-sector gauge invariance.

—>Need a Higgs mechanism in the dark sector!
— Introduction of further dark sector particles (beyond the DM candidate and mediator)
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Annihilation to individual mediators

X A X zZ'
Simplified Model Badly behaved at
) . s-wave _
with vector mediator high energy
X Z' X A
P § X———F-------- S
Simplified Model
with scalar mediator | [T ’
X———— Lo § X————L - S
p-wave S-wave,
suppressed phase space suppressed

Canberra International Physics Summer School 2023 — ANU - January 2023 — Nicole Bell, U.Melbourne



Including both mediators

X Z" X A X A

X 7! X ZI

X

New, dominant, s-wave annihilation process yy — SZ'

NFB, Cai & Leane, arXiv:1605.09382
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Dark Matter at the collider experiments




Mono-X signhal at colliders

(1 The dominant DM production process is invisible (DM stable, weakly interacting) :
qq = xx

1 Need visible particles in the final state, to recoil against missing transverse energy
qq — xx + SM particle

q X
Mono-X process in which DM is visible as a
high p; state + missing E; visible
particle(s)
- Mono-jet, mono-photon, mono-Z, mono-
W, mono-Higgs B
q X
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Mono-jet Mono-photon

~
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Other mono-X processes

Mono-Z , initial state radiation Mono-Z from DM interacting directly
) z with Z bosons
q X g z

|

¥

L. Carpenter et al

Mono-Higgs

fl, 5 { A
b I
r’lﬂﬁ. _-.!I. purne
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Higgs Portal DM

Take the EFT approach and consider interactions of the form:

1
AR OpmOsm

where Op,, = dark matter operator
Os,, = standard model operator

and with Op;; & Og;s both singlets under the SM gauge group

The lowest dimension SM operator is the Higgs bilinear: HY H

o H ” 1
- Form “Higgs portal” operators of the form: T Opy (HJr H)
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Types of Higgs portals

* Scalar Higgs portal: 1,S?(HT H)

* Vector Higgs portal: A,V*V, (HT H)

* Fermionic Higgs portal: %()Z)()(HJr H)
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Higgs Portal & Higgs invisible width

Mhiggs

|f Mpym <

- Higgs width increased by decay to dark matter, H — yyx
—> Constraints from LHC determinations of Higgs invisible width

q
Br(inv) < 0.24 ATLAS, arXiv:1904.05105

Because the SM Higgs width is so small
(about 4 MeV), even modest limits on B(inv)
place strong limits on Higgs portal models.
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arXiv: 1904.05105

ATLAS
gepserved g o4 \s=7TeV, 4.7 fb"

H—inv

All limits at 90% CL Vs =8TeV, 20.3 fb"
Vs =13 TeV, 36.1 fb’

Higgs portals
#w#% Scalar WiMP
s Fermion WIMP
Other experiments
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=== DarkSide50
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EFT: Useful, but have limitations

(] For an EFT description to be valid, need: A = Mmed -, Mdm
\/gqu 41T

This does NOT hold for all the parameter space relevant for LHC searches (G.Busoni et al)
J EFT bounds can over-estimate or under-estimate constraints on a given model

 Unitarity issues due to lack of gauge invariance ...

d Importantly: in many UV complete theories, there exist other dark sector particles at
energy scales accessible to the LHC.
Particles with SM quantum numbers, or a Z’ gauge boson, ... etc.
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Beyond an EFT = Simplified Models

q X

med /

A given EFT maps to multiple simplified models
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t-channel mediator

>¢
0]

mediator

The mediator:

= |f y stabilized by a symmetry = the mediator also carries this symmetry.

Carries SM quantum numbers -2 can be pair produced at colliders

= |s heavier than the DM (so the DM does not decay to the mediator)

e.g. mediator = squark (DM = neutralino of SUSY models)
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Beyond an EFT:

t-channel scalar I\
mediator . E;;X
q g
g ;O GTOO000F--»---0 g _-0 2)
g « : r” ; q
‘ AO . o !
v : RS i
g R L L I e LR’ ot X
(al) (a2) (a3) :
q ;O ——— e O Q—)—-——-)————t;"):—‘—)z
g 12)
R Y X X
\r\ . . |
q VO e et (a0
(a4) (b) 1)

(] ———— ;O g
N s
AN 4
Ny
\

//\

hY

\@'

(cl
a0t s
N V4
| Nk

~ Mediator pair production .

(c3) (c4)
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) ooa 9N
q «——X { «— X\
[ A\ (bl)

,. Mono-jets =
oY
BTN, o) B -
°Y ¢

(d3)

H.An et al, 1308.0592

See also: Changetal., 1307.8120
Bai & Berger, 1308.0612
DiFranzo et al., 1308.2679
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s-channel mediator

7 X q

med / - /

] N N

g X

W)

X

The mediator:

= Directly couples to the SM = can produce mediator at colliders
= Can be lighter or heavier than the DM

= Mass and width are important
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s-channel vector mediator

L=Var*(g) - afvs)x+ ) Vifr*(gf - givs)f
f=q,lv

V, = new dark-sector mediator, such as a Z', with vector and/or axialvector couplings

Search for:

* Dark matter production 2 Mono-jets + missing ET

* Mediator resonances = Dijet resonance (“bump hunting for an on-shell mediator

* Non-standard contributions to gqgq contact interactions (at very high mediator mass)
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s-channel vector mediator

Collider vs direct detection
(spin-independent)

o, (DM-nucleon) [cm?]

-]
CanberraIn

0_37 DM Simplified Model Exclusions ATLAS Preliminary July 2017

= N\ ! J = Dijet
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s-channel vector mediator

Collider vs direct detection .
(spin-dependent)

6., (DM-proton) [cm?

e
Canberra Int

_37 DM Simplified Model Exclusions ATLAS Preliminary July 2017
10 - - -\ S _Dljet
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1 0741 - ET+y¥s=13TeV, 36.1 b
E Eur. Phys. J. C 77 (2017) 393
B ET*+jet V5 = 13 TeV, 36.1 fb”
10—42 - ATLAS-CONF-2017-060
= ET**+Z Vs =13 TeV, 36.1 1"
C ATLAS-CONF-2017-040
-43
10 ~— PICO-60 C,F,
arXiv:1702.07666v1 [astro-ph.CO]
—44
10
10_45 Axial-vector mediator, Dirac DM
9, 0.25, 9= 0, o = 1
ATLAS limits at 95% CL, direct detection limits at 90% CL
1 0_46 L 1 L L 1 1 L 1 L 1 [ L A |

1 10 102



Complementarity of collider/direct/indirect

If we see a missing E+ (DM candidate) signal at a collider, we won’t know if it’s really the
dark matter without other information.

** Is it stable?
— DM must be stable on a timescale of order 10 Gyr. Colliders will tell us about
stability on only nanosecond timescales (long enough to escape the detector).

¢ Does it contribute all the relic density?
- Need to measure couplings to all SM particles to infer the total annihilation rate.

¢ Indirect detection
- Most direct test of the annihilation cross section and hence the WIMP paradigm.

¢ Direct detection.
— Detection of actual relic particles.
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Dark Matter Lecture #4
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Dark Matter Direct Detection

~. DM
"**-k_._:EBD WE

-
..."lr'h_.'_-l'#

nucleus
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Dark Matter Direct Detection

SABRE experiment
(to go to SUPL lab in Australia)

mmer School 2023 — ANU - January



Direct Detection

Search for nuclear recoil (or electron recoil) arising from the scattering of dark matter
particles with nuclei (electrons).

. in the summer,
DM “wind moving against wind

@

®
in the winter,
moving away from wind
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Direct Detection Experiments

Nuclear recoil experiments search for the occasional collision of dark matter particles
with nuclei in a detector
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Direct Detection limits

Spin-independent (Sl) interactions Spin-dependent (SD) interactions
—> strong bounds due to coherent enhancement > weaker bounds
1073 10° 10-# 10°
= S COMSiite Run 2 (2018) 10*
-38 NEWS-G (2017) -2 —a3 3
§ 10 10738 E 10 \CDEX-10 (2018) "
= = 10-% 102 &
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U 1
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o] E = S
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S 1074 102 9 ST \ 1ENGN_*_91?TE%,%'%?}' @A o %
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J. Aalbers et al. arXiv:2203.02309 S. Robles
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Spin-independent vs Spin-dependent

o Spin dependent - DM interacts coherently with whole nucleus, with A? enhancement
o Spin dependent — DM couples to spin of nucleus.
o In addition, some interactions are suppressed by velocity or momentum transfer.

Name Interaction Structure Js1 suppression osD suppression s-wave?
F1 X Xqq 1 g?v? (SM) No
F2 X~°Xqq q° (DM) g*v? (SM); ¢* (DM) Yes
F3 XXaqv°q 0 q* (SM) No
F4 Xv° X qv°q 0 q° (SM); ¢* (DM) Yes
EF5 Xy Xqv,.q 1 22 (SM) Yes

(vanishes for Majorana X) ¢* (SM); ¢? or v-? (DM)

F6 Xv"Y° X qv,.q v-2 (SM or DM) q° (SM) No
F7 XY XGv,.7°q g?vr? (SM); ¢* (DM) v? (SM) Yes
(vanishes for Majorana X) v or ¢° (DM)

F8 X"’ Xqvur°q ¢*v? (SM) 1 o /M
F9 X" X qo,u.q q* (SM); ¢° or v?2 (DM) 1 Yes

(vanishes for Majorana X) q’v? (SM)
F'10 Xo"' v X qouuq q° (SM) v-2 (SM) Yes

(vanishes for Majorana X)

q° or v2 (DM)




Direct Detection rates

Differential rate for WIMP scattering:

where:

dR 0o f”max do
dER meN Vimin
my = nucleus mass

Vmin Minimum DM velocity to produce detectable event at energy E
Vmax 1S galactic escape velocity

Umin = \/mNE/(ZHZ)
where u = m,my/(m, + my) = reduced mass

Direct detection experiments most sensitive for m,, ~ my
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Cross section

do
dEg Z,u vz

Differential cross section: (05"F&(q) + 05 F&, (@)

where F&(q) and where F&,(q) are form factors.

H n
For spin-independent scattering: UcS)I = Op - u‘;‘ N2 P+ (A-Z) - f ]2
p

Usually f,, = £, is assumed (i.e. DM couples with same strength to neutrons and protons)

Then we have: 3! o« A2 where A is the nucleon number.
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Direct Detection rates

Ball-park numbers:

events [ A oW N (v) £0

R~ 0.13 X X X
kg vear | 100 10728 cm? 220kms—! 0.3 GeVem—>

2 2,2
ERr = £ = (1 —cosf) ~ 30 keV
QmN TN
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Approaches to Direct Detection

All experiments located underground to shield against backgrounds.

Two approaches:

 Very low background experiment
- where you aim to select only DM events (LZ, Xenon, etc)

J Annual modulation signal
— look for annual modulation on top of a large background (DAMA/Libra)
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TypeS Of Signals Cryogenic Superheated

bolometers liquids

'PHONONS / HEAT

Cryogenic bolometers
with charge readout

Scintillating cryogenic
. WIMP\ bolometers

Germanium Scintillating
detectors crystals
CHARGE LIGHT
. : Liquid noble-gas L
- Directional . Liquid noble-gas
arXiv:1509.08767 detectors dual-phase time detectors

projection chambers c

]




arXiv:1509.08767

Cross section
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Dual-phase liquid noble gas TPCs
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Nuclear vs electron recoil discrimination: arXiv:1405.7600

pos HV

A Nuclear Recoil

S1 A S2
>

Time

1
[
Amplitude

A Electronic Recoil

S1 S2

Amplitude

neg HV Time
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Nuclear vs electron recoil discrimination:

104 I I 1 I
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Annual modulation signal
WIMP WIND

e

GALACTIC

2’7T(t _ 750) PLANE
T

dR
d—E(E, t) ~ So(E)+ Sim(E) - cos (

/' /" DECEMBER
* Earth's orbit

Image credit: New Scientist
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DAMA/LIBRA annual modulation
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Comparison of DAMA signal with exclusion limits from other experiments

10" prer

10-38
DAMA/I

D

DAMA/Na

——

10-40 -

=
=
b~
%) 42 | et _
2 10 CRES -
'-a% \ Dark S'\de—:.:f__
S 1044 - 3600 |
2 ¥~Floor XENON-1T DEAP-3
o -46 /
2 107 |- N —
O '-._"\\ LZ
."\ S ———-
1 0-48 | \ e ~ g &FL\NJ‘:\_ Lk _
10-50 ||||| 1 1 ||||||| 1 1 ||||||| 1 1 L1 1111
109 101 102 103

S Dark Matter Mass (Gev/c2) _=




- repeat the experiment in Southern Hemisphere!
Dark matter, or a non-understood background?

Something is modulated. Strong motivation to check the systematics with an experiment in
the southern hemisphere.

— The phase of a background modulation could be expected to change with location
(sessional variation of atmosphere, etc).

—> A genuine dark matter signal will look the same anywhere on Earth.

— SABRE experiment in the SUPL lab in
Australia will test/resolve this question

26 chce

i DAMA /Nal | & DAMA/LIBRA  — Best-fit

D02
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Inelastic dark matter
‘ X1 ‘ X2

Two almost degenerate dark matter states:
My My + 0m

Called inelastic because the y; x; coupling is absent and hence the dominant interaction is

X1n—=Xz2mn

Kinematically forbidden unless mass splitting is small, dm < m

* Direct detection experiments restricted to keV mass splittings, e.g., 6 < 180 keV for Xenon
* Bigger mass splittings accessible if DM is quasi-relativistic (some astrophysics scenarios)
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Direct detection challenges: neutrino floor

107° R oo R
. . . -38 —
> Next generation experiments will 10 SAMAL
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. ) b B
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510 e
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. . . § 10-46 | \
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Direct detection challenges: neutrino floor
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Direct detection challenges:

» Low-mass dark matter gives very
low-energy recoil signals
-- below experimental thresholds

» New detection technologies,
to achieve lower thresholds

» New analyses to probe lower
mass dark matter using
existing detectors

SD WIMP - neutron cross section [cm?)

low-mass dark matter

103
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Migdal effect

The ionization of an atom following a nuclear recoil

Image: M. Dolan et al.

- Useful in cases where the nuclear recoil is below threshold (i.e., low mass dark matter)

and we can instead detect the ionization signal

Migdal electrons: Egp max

Nuclear recoil: ER max =

Target mass
DM-nucleon reduced mass
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Migdal effect

Xenon
10728 . ; .
10730 — XENONIT (CRDM) 1
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_ 1073 —— CRESST-TI2019 1
= — CDMSlite 2015 1
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I 10
= =
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— —40
— 10
=
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XenonlT limits

10—34 .
PRL 123, 241803 - Migdal effect

1073° + PRL 123, 251801 - Light dark matter

PRL 121, 111302 - Main WIMP search
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Boosted Dark Matter

Halo dark matter
- highly nonrelativistic
- low energy nuclear recoils in direct detection experiments

Could there be a population of higher-energy dark matter?

o Boosted DM produced from decay/annihilation of heavier dark states

o Cosmic-ray upscattered dark matter (“inverse direct detection”)

o DM produced in cosmic ray interactions in the atmosphere (“CR beam dump”)
o Solar reflected dark matter

o Supernova dark matter (light dark matter produced in galactic supernova)
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Cosmic ray up-scattered dark mater

Bringmann & Pospelov, PRL 2019
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ark Matter Capture in Stars

Canberra International Physics Summer School 2023 — ANU - January 2023 — Nicole Bell, U.Melbourne




Dark Matter Capture in Stars

-> an alternative approach to Dark Matter Direct Detection experiments

Dark matter

particles * Dark matter scatters, loses energy,

becomes gravitationally bound to star

* Accumulates and annihilates in centre of
the star = neutrinos escape

In equilibrium:
Annihilation rate = Capture rate
- controlled by DM-nucleon scattering

The Sun Q cross section
Neutrinos produced from - probes the same quantity as dark
decays of annihllation matter direct detection experiments

products may be detected.
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Capture, annihilation, evaporation

DM number density depends on Capture, Annihilation & Evaporation rates:

dN
X _ 2

Neglecting evaporation (negligible in the Sun for m, > 4 GeV) we have
C t
> N, (t) = \/:tanh (—) where Teq = 1/VCA
A Teq

Capture-annihilation equilibrium when t > t,,: lgnn = %AN)? = %C
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Dark matter annihilation in the Sun

Spin-Dependent (SD)

HyperK, 11 yrs, 90% CL

\

IceCube 2016/17
s xx —> bb

10° E v\CPE’SO XX WW
- 2 —a xx— T T
. 1038 E 8 — XX VU
"= - 2 PINGU 5yrs
L 10¥ L - - xx—bb
% & § ______ - = XX—>T+7'_
© 10740 -g h HyperK
: xx — bb
1041 [ xx—=W*TW~-
xx—=T7t7"
1042 Lol L0l XX — v
10° 10! 102 103
m, (GeV)

NFB, Dolan & Robles, arXiv:2107.04216

Spin-dependent (SD) interactions:
- solar DM searches competitive or
better than direct detection
experiments

Spin-independent (SI) interactions:
- direct detection experiments win.
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Gamma Rays from the Sun — long lived dark-sector particles

If captured DM annihilates to a light, long-lived mediator (e.g. a dark photon):
» Annihilation products can escape the Sun
» Decay beyond solar core = less attenuation of neutrino signal (NFB & petraki, Jcap 2011)
» Decay between Sun and Earth = solar gamma rays or cosmic rays

v (extinguished) v (less attenuated)

v (extinguished)

—~

Y,V

v (attenuated) (unattenuated)

5 ' Long-lived mediators Leane, Ng & Beacom,
Short-lived mediators g arXiv-1703.04629
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Neutron Stars

Due to their extreme density, neutron stars capture dark matter very efficiently.

Capture probability saturates at order unity when
the cross section satisfies the geometric limit

mn —_
O, ~ TR? — ~ 10~*>cm?
M, o

DM Scatteriﬁg

Canberra International Physics Summer School 2023 — ANU - January 2023 — Nicole Bell, U.Melbourne



Dark Matter in Neutron Stars — Black holes?

Kouvaris; Kouvaris & Tinyakov; McDermott, Yu & Zurek; Bramante, Fukushima & Kumar; NFB, Petraki & Melatos;
Bertone, Nelson & Reddy; and others.

Due to their density, neutron stars capture dark matter very efficiently

Can neutron stars accumulate so much dark matter that they would collapse to back

holes? Yes, but typically only if:
* No annihilation (e.g. asymmetric DM)
e DM is bosonic (and condenses to a small self gravitating BEC), or
* DM is fermionic with attractive self-interactions, and
* No repulsive-self interactions that prevent collapse (even very very tiny self-interaction is
enough) NFB, Petraki & Melatos, PRD 2013

—> Black hole formation possible but quite unlikely for typical WIMP-like dark matter
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Evolution of DM in a neutron star

o Capture - DM-nucleus scattering
o Thermalisation — scattering, energy loss, DM accumulates in a small thermal sphere.

o Self gravitation (and possible BEC formation) — occurs when enough DM has
accumulated to overwhelm the NS gravity (in the small thermal sphere).

o Collapse ? —if self gravitating DM exceeds the Chandrasekhar limit.
— black hole grows by accretion or evaporates

o Self-interactions prevent collapse. Not that if DM scatters from nucleons, a self-
interaction term must be present, at least at loop level.

n

% 7 x

“ n by
X “ X

A « .

n

X

ics Summer School 202 n 146




Neutron star heating
—> from dark matter scattering plus annihilation

* Capture (plus subsequent energy loss)
- DM kinetic energy heats neutron star ~ 1700K (Baryakhtar et al)

* Annihilation of thermalised dark matter
- DM rest mass energy heats neutron star ~ additional 700K

Coolest known neutron star (PSR J2144-3933) has a temperature of ~ 4.2 x 10* K.

Old isolated neutron stars should cool to: 1000 K after ~ 10 Myr
100 K after ~ 1 Gyr
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Kinetic Heating Sensitivity: nucleon scattering

Spin-Independent (SI) Spin-Dependent (SD)
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Anzuini, NFB, Busoni, Motta, Robles, Thomas and Virgato, arXiv:2108.02525
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Kinetic Heating Sensitivity: lepton scattering
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Muon scattering

Electron scattering
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Useful references

Freezeout:
o Kolb and Turner, “The Early Universe”

Review papers:
o Bertone, Hooper, Silk, Physics Reports 405, 279, 2005 [arXiv:hep-ph/040417]
o Feng, Ann. Rev. Astron. Astrophys. 48: 495, 2010 [arXiv:1003.0904]

Direct detection:
o Undagoitia and Rauch, J. Phys. G43, 1, 013001, 2016 [arXiv:1509.08767]
o Aalbers et al, J.Phys.G 50, 1, 013001 2023 [arXiv:2203.02309 ]
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