

-----OzGrav-

Pulsar timing arrays and the evolution of galaxies

Hannah Middleton

OzGrav – University of Melbourne hannah.middleton@unimelb.edu.au

January 2019, Canberra

Overview

- What has been seen so far?
- Massive black holes in binaries
- Gravitational waves from massive black hole binaries
- Searching Pulsar Timing Arrays
- Pulsar timing array results & what can we learn?
- The future

Gravitational waves so far

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

Gravitational wave spectrum

[GW Plotter: Moore+2015, rhcole.com/apps/GWplotter/]

Super massive black holes

Super massive black hole binaries?

Masses: $\sim 10^6 M_{\odot} - 10^9 M_{\odot}$

[Interstellar]

Questions:

- Are there massive black hole binaries out there?
- o How do they form?
- Gravitational waves from them
- What can we learn from these gravitational wave observations?

Our own galaxy

Other galaxies too?

• Massive black holes $10^6 - 10^9 M_{\odot}$ in most galaxies [Kormendy & Ho 2013]

What about massive black hole binaires?

[R. Jay GaBany, Cosmotography]

Merger tree

Galaxy growth by mergers (White & Rees 1978)

Likely that black hole growth goes hand-in-hand with host galaxy

[Volonteri] [NASA]

Dynamical Friction

Final parsec?

Gravitational wave emission

Galaxy merger gets the black holes within a few parsec

Need to get closer for GW emission:

$$a_{\rm gw} = \left[\frac{64}{5} \frac{G^3 M_1 M_2 (M_1 + M_2) F(e)}{c^3}\right]^{1/4}$$

For $M_1 = M_2 = 2 \times 10^7 M_{\odot}$ $a_{\rm gw} \sim 0.01 \, {\rm pc}$

Galaxy merger - Dynamical Friction - Final parsec? - Gravitational wave emission

Closing the gap

Three body interaction with stars continues to shrink binary.

Eventually stars are depleted

Quinlan 1996, Mikkola & Valtonen 1992

[Merritt 2013]

Gravitational wave emission!!

Time to merger from 0.01pc:

$$t_{\rm merge}(a) = 5.8 \times 10^6 \left(\frac{a}{0.01\rho c}\right)^4 \left(\frac{10^8 M_{\odot}}{M_1}\right)^3 \frac{M_1^2}{M_2(M_1 + M_2)} \text{ years}$$

Observational evidence for MBHBs

OJ287

- massive black hole binary candidate
- \circ quasi-periodic outbursts observered \sim 12yr
- timing consistent with GW emission
- next burst expected July 2019
- [Valtonen+2008, Dey+2018]

Observational evidence for MBHBs

- $\circ\,$ PG 1302102 periodicity \sim 1884 \pm 88 days [Graham+2015]
- PSO J334.2028+01.4075 periodicity 542 ± 15days
 [Liu+2015]
- radio galaxy 0402+379 at *a* ~ 7.3pc
 [Rodriguez+2006]
- 111 candidates in the Catelina Real Time Transient Survey [Graham+2015]

Massive black hole binaires are out there!

What kind of gravitational waves do we expect to see?

Gravitational waves from Massive black hole binairies

GW freqs

Transition to GW driven at ${\sim}nHz$

Frequency of merger:

$$f_{\rm gw,isco} = \frac{1}{\pi 6\sqrt{6}} \frac{c^3}{GM_{\rm T}}$$

Some typical numbers

total mass	merger frequency
$M_{ m T}$	f _{gw,isco}
60 <i>M</i> _☉	\sim 100Hz
200 <i>M</i> ⊙	\sim 10Hz
10 ⁹ <i>M</i> ⊙	\sim 10 ⁻⁶ Hz

GW freqs

Massive black hole binaries merge way before LIGO/Virgo band.

[GW Plotter: Moore+2015, rhcole.com/apps/GWplotter/]

Stochastic background

- Expect many binaries population
- Stochastic background

[Volonteri]

Stochastic background

For circular binairies:

$$h_{\rm c}^2(f_{\rm gw}) = \frac{4G^{5/3}}{3\pi^{1/3}c^2} f_{\rm gw}^{-4/3} \int_0^\infty \int_0^\infty N(z, \log_{10}\mathcal{M}) \frac{\mathcal{M}^{5/3}}{(1+z)^{1/3}} \mathrm{d}z \mathrm{d}\log_{10}\mathcal{M}$$

 10^{-9}

 10^{-8} GW frequency / f_{qw}

How can we predict $h_{c}(f_{aw})$?

24/42

25/42

How can we detect these gravitational waves?

- $_{\circ}$ GW source \checkmark
- o Idea of what the signal might look like √
 o Detector???

Pulsar Timing Arrays

Using millisecond pulsars to search for gravitational waves

Bill Saxton, NRAO/AUI/NSF

- Millisecond pulsars
- Cosmic lighthouses
- Change in distance between Earth and pulsar → change in arrival time of pulses

Searching for massive black holes – pulsar timing arrays

David Charman

Measure Pulse Time of Arrival

- Observe pulsars for a long time
- Compare expected time of arrival to observed
- Pulsars need to be good timers

ightarrow millisecond pulsars

- But, not just gravitational waves...
 - Pulsars in binaries
 - Spin-down
 - Pulse-profile variability
 - Interstellar medium
 - Glitches
 - Timing standards
 - Solar System ephemeris
 - ο...

Look for correlations

- Measure time of arrivals
- Hellings & Downs Curve
- Look for correlations between pulsars

Hellings & Downs 1983

Looking for Gravitational waves

Groups around the world are searching for the background

[INAF]

[MPIfR]

[NRAO]

Some PTA results

[Hobbs & Dai 2017]

What does this tell us?

Some PTA results

Results: PPTA: Shannon+2015, EPTA: Lentati+2015, NANOGrav:

Arzoumanian+2018,

[Shannon+2015]

Inference with upper limits

A detection will tells us:

- o Do massive black holes form binaires?
- galaxy merger rate
- redshift and mass distributions
- are the binaries eccentric?

E.g. Chen+2017a,b, Middleton+2018

Inference with upper limits

Non-detections are informative too.

e.g. Arzoumanian+2018, Shannon+2015, Middleton+2018

[Middleton+2018] [Arzoumanian+2018]

38/42

Are we nearly there yet?

larger arrays $ightarrow \sim$ 80% probability of detection within 10 years

smaller arrays
 → doesn't look good
 for next 20 years!

Taylor+2016

What if still no detection?

What could be going on?

Is something speeding up the binary evolution?

- Eccentricity
- More star / gas interaction than expected
- Or slowing them down?
 - Stalling before they reach gravitational wave emission

Future telescopes

SKA

ASK

[SKA Organisation]

[B. Boyle]

MeerKAT

FAS

[www.ska.ac.za/gallery/meerkat/]

41/42

Conclusions

- PTAs probe low frequency gravitational wave spectrum
- Learn about the population of massive black hole binaries
- Relate this to galaxy evolution
- New telescopes will push sensitivity further
- Keep timing!

Find out more:

Parkes Pulsar Timing Array: www.atnf.csiro.au/research/pulsar/ppta/ International Pulsar Timing Array: http://ipta4gw.org/ Enterprise PTA analysis software: https://enterprise.readthedocs.io