Neutrino Physics

Jenni Adams

University of Canterbury New Zealand

The Invisible Universe 2019

Neutrino Physics

The Invisible Universe 2019

What's so interesting about neutrinos?

Neutrinos are a key to understanding a range of physics.

- Neutrino sector expected to give clues to beyond the standard model physics and grand unification theories
- Neutrino nature is related to lepton number violation, which may be important for generating the matter/antimatter asymmetry in the early Universe
- \bullet There is a cosmic neutrino background (like the CMB) of 337 $\nu/{\rm cm}^3$ which affects the Universe's evolution and large scale structure formation
- Neutrinos are a unique cosmic messenger, able to escape from dense regions and unaffected by magnetic fields

. . . .

What's so interesting about neutrinos?

Neutrinos are a key to understanding a range of physics.

- Neutrino sector expected to give clues to beyond the standard model physics and grand unification theories
- Neutrino nature is related to lepton number violation, which may be important for generating the matter/antimatter asymmetry in the early Universe
- There is a cosmic neutrino background (like the CMB) of 337 $\nu/{\rm cm}^3$ which affects the Universe's evolution and large scale structure formation
- Neutrinos are a unique cosmic messenger, able to escape from dense regions and unaffected by magnetic fields

• . . .

Introducing neutrinos...

Standard Model Particles

Introducing neutrinos...

Three neutrino flavours corresponding to the three charged leptons

And three flavours of anti-neutrinos

 Neutrino flavour and antiparticle/particle distinction determined by the interaction vertex and lepton flavour conservation

Introducing neutrinos... sterile neutrinos

 Three active neutrino flavours corresponding to the three charged leptons

- It is possible that there are sterile neutrinos neutrinos which do not interact by any force other than gravity
- Sterile neutrinos could oscillate with the active neutrinos in that case the PMNS matrix would not be unitary

Neutrino masses

Pontecorvo-Maki-Nakagawa-Sakata Matrix relating flavour and mass eigenstates

$$\begin{pmatrix} \nu_{\rm e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{\rm e1} & U_{\rm e2} & U_{\rm e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

The Invisible Universe 2019

Neutrino flavour and mass eigenstates

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

This 3×3 unitary mixing matrix can be expressed in terms of four physical parameters conventionally chosen as three mixing angles $\theta_{12}, \theta_{23}, \theta_{13}$ (like 3 Euler angles describing rotation in 3D space) and one phase δ_{13}

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$c_{ab} \equiv \cos \theta_{ab}$$
 $s_{ab} \equiv \sin \theta_{ab}$ $0 \le \theta_{ab} \le \frac{\pi}{2}$ $0 \le \delta_{13} \le 2\pi$

The Invisible Universe 2019

$$\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix} \qquad \qquad \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix}$$

Amplitude for oscillation from flavour state α to state β

$$A(
u_{lpha}
ightarrow
u_{eta}) = \sum_{i} \left[A(ext{neutrino born flavour } lpha ext{ is a }
u_{i})
ight]$$

 $\times A(\nu_i \text{ propagates}) \times A(\text{when } \nu_i \text{ interacts it makes flavour}\beta)$

Propagator:

In terms of time t and position L each mass eigenstate propagates as

$$e^{-i(E_it-p_iL)}$$

as neutrinos relativistic $t \cong L$ the propagator is $e^{-i(E_i - p_i)L}$

$$p_i = \sqrt{E^2 - m_i^2} \cong E - m_i^2/2E$$

SO

$$A(\nu_i \text{ propagates}) = e^{-i(m_i^2/2p)L} \cong e^{-i(m_i^2/2E)L}$$

The Invisible Universe 2019

$$\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix} \qquad \qquad \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix}$$

Amplitude for oscillation from flavour state α to state β

$$A(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sum_{i} [A(\text{neutrino born flavour } \alpha \text{ is a } \nu_{i})]$$

 $\times A(\nu_i \text{ propagates}) \times A(\text{when } \nu_i \text{ interacts it makes flavour}\beta)$

$$\begin{split} A(\nu_{\alpha} \to \nu_{\beta}) &= \cos \theta \; \mathrm{e}^{-i \left(m_{1}^{2}/2E\right)L} \left(-\sin \theta\right) + \sin \theta \; \mathrm{e}^{-i \left(m_{2}^{2}/2E\right)L} \cos \theta \\ &= \cos \theta \sin \theta \left(-\mathrm{e}^{-i \left(m_{1}^{2}/2E\right)L} + \mathrm{e}^{-i \left(m_{2}^{2}/2E\right)L}\right) \\ &= \frac{\sin 2\theta}{2} \left(-\mathrm{e}^{-i \left(m_{1}^{2}/2E\right)L} + \mathrm{e}^{-i \left(m_{2}^{2}/2E\right)L}\right) \end{split}$$

 $\sin 2\theta = 2\sin \theta\cos \theta$

$$\begin{split} P(\nu_{\alpha} \to \nu_{\beta}) &= |A(\nu_{\alpha} \to \nu_{\beta})|^{2} \\ &= \sin^{2}(2\theta)\frac{1}{4}\left|-\mathrm{e}^{-i\left(m_{1}^{2}/2E\right)L} + \mathrm{e}^{-i\left(m_{2}^{2}/2E\right)L}\right|^{2} \\ &= \sin^{2}(2\theta)\frac{1}{4}\left[2 - \left(\mathrm{e}^{-i\left(\left(m_{1}^{2}-m_{2}^{2}\right)/2E\right)L} + \mathrm{e}^{+i\left(\left(m_{1}^{2}-m_{2}^{2}\right)/2E\right)L}\right)\right] \\ &= \sin^{2}(2\theta)\frac{1}{2}\left[1 - \cos\left(\left(m_{1}^{2}-m_{2}^{2}\right)/2E\right)L\right] \\ &= \sin^{2}(2\theta)\sin^{2}\left(\frac{\delta m_{12}^{2}L}{4E}\right) \end{split}$$

Neutrino Physics The Invisible Universe 2019

 $\sin^2\theta/2 = \frac{1}{2}(1-\cos\theta)$

$$P(\nu_{\alpha} \to \nu_{\beta}) = |A(\nu_{\alpha} \to \nu_{\beta})|^2 = \sin^2(2\theta)\sin^2\left(\frac{\delta m^2 L}{4E}\right)$$

Oscillation of reactor neutrinos at KamLAND

Oscillation pattern for anti-electron neutrinos from Japanese power reactors as a function of L/E

Man has a second a se

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$39^{\circ} < \theta_{23} < 53^{\circ} \qquad 7^{\circ} < \theta_{13} < 9^{\circ} \qquad 31^{\circ} < \theta_{12} < 37^{\circ}$$

$$Atmospheric/LBL-Beams \qquad Reactor \qquad Solar/KamLAND$$

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$39^{\circ} < \theta_{23} < 53^{\circ} \qquad 7^{\circ} < \theta_{13} < 9^{\circ} \qquad 31^{\circ} < \theta_{12} < 37^{\circ}$$

$$Atmospheric/LBL-Beams \qquad Reactor \qquad Solar/KamLAND$$

Neutrino oscillations - Summary

- Neutrinos exhibit flavour oscillations due to the misalignment of the neutrino flavour and mass eignenstates
- The flavour and mass eigenstates are related by a matrix which can be characterised by 3 mixing angles and a phase (CP violating)
- Observations of the flavour oscillations allow the mass differences and mixing angles to be determined
- Focus is on the undetermined mass hierarchy, CP violating phase, and the mass values
- Neutrino parameters can probe extensions to the standard model

Sources of neutrinos

Reactors

Particle accelerators

Geo-neutrinos

Atmospheric neutrinos – interactions of cosmic rays in the Earth's atmosphere

Sun

Supernova

Astrophysical accelerators

Cosmic neutrinos – prediction 337 v/cm³

Sources of neutrinos

Solar neutrinos

8.3 light minutes

Solar radiation: 98 % light (photons)
2 % neutrinos
At Earth 66 billion neutrinos/cm² sec

Atmospheric neutrinos

Atmospheric neutrino oscillations

Observation by SuperKamiokande - 2008

Atmospheric neutrino oscillations show characteristic L/E variation

Detecting neutrinos?

No neutrino tracks...

basic principle is to look for evidence that neutrinos have interacted, by detecting products of the interaction

Detecting neutrinos?

No neutrino tracks...

basic principle is to look for evidence that neutrinos have interacted, by detecting products of the interaction

Neutrino Detectors

ANITA ANNIE ANTARES ARIANNA BDUNT (NT-200+) BOREXINO CLEAN COBRA Daya Bay Double Chooz EXO-200 GALLEX GERDA GNO HALO HERON HOMESTAKE ICARUS IceCube INO JUNO Kamiokande KamLAND KM3NeT LAGUNA LBNE/DUNE LENS MAJORANA DEMONSTRATOR MicroBooNE MINERVA MiniBooNE MINOS MINOS+ NEMO Experiment MOON NEMO Telescope NEVOD NOA OPERA RENO SAGE SciBooNE SNO SNO+ Super-K T2K UNO ...

Detecting neutrinos

- Large volumes needed to combat weak interaction
- Shielding required to reduce backgrounds \implies underground
- Three main detection techniques
- Radio-chemical: Radioactive atoms formed by capture of neutrinos in target Eg Ray Davis's solar neutrino experiment, used the isotope ³⁷Cl, neutrino capture produces radioactive ³⁷Ar, a gas, which was removed from the target, purified, and counted.
- Scintillation Use liquid scintillator, organic liquid that gives off light, when charged particles pass through it. The scintillator is monitored by optical detectors.
- Cherenkov light detectors Cherenkov light is produced by particles moving faster than the speed of light in the medium. Optical detectors detect the Cherenkov light.

Neutrino Sources and Detectors

