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To be covered: Solitons in quantum gases

* Lecture 1: Solitons and topological solitons
— solitons in water: the KdV equation, iintegrability
— solitons of the nonlinear Schrodinger equation
— solitons of the sine Gordon equation - topological solitons
— Bose Josephson vortices in linearly coupled BECs

* Lecture 2: Semitopological solitons in multiple dimension
— Solitons as quasiparticles: effective mass
— solitons in the strongly-interacting Fermi gas
— snaking instability
— vortex rings
— solitonic vortices
* Lecture 3: Quantum solitons and Majorana solitons
— solitons in strongly-correlated 1D quantum gas
— solitons with Majorana quasiparticles in fermionic superfluids



Simulation Experiment

Solitons cut through the cold

BEC 5



Topologial solitons

So if a soliton is a localised wave, then what is a
topological soliton?



Hagfish makes a knot

Credit: Stefan Siebert, Sophia Tintory, Casey Dunn https://vimeo.com/7825337




Topologial solitons

So if a soliton is a localised wave, then what is a
topological soliton?

Wikipedia:

“A topological soliton or a topological defect is a
solution of a system of partial differential equations or
of a quantum field theory homotopically distinct from
the vacuum solution.”

Homotopy: a continuous deformation




Solitons appear spontaneously

e.g. when cooling through the Bose-Einstein condensation phase transition

K Nature Physics 2013: \
nature
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Spontaneous creation of Kibble-Zurek solitons in
a Bose-Einstein condensate

\ Giacomo Lamporesi, Simone Donadello, Simone Serafini, Franco Dalfovo and Gabriele Ferrari* /

Also: proposal to observe Josephson
vortices (topological solitons) by
rapidly cooling a double-ring Bose-
Einstein condensate.

SW Su, SC Gou, AS Bradley, O Fialko, JB, Phys. Rev. Lett. 110, 215302 (2013)



From linear to nonlinear waves: shallow water

O0:p + cO,¢ =0 Linear wave equation ¢(x,t) = Asin(x — ct)

Nonlinear waves: wave speed depends on amplitude:

2r

0:¢ + ¢ 0,0 = 0 Inviscid Burgers equation

Add dispersive (higher order derivative term): ¢

Source: Leon van Dommelen, FSU

Korteweg — de Vries equation (1895)
Oy + 0y + 6¢ pp = 0 N

u(x)
1

Soliton solution
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Source: Wikipedia



KdV: an integrable soliton equation

1965: Zabusky and Kruskal discover
robust collision in numerics,
invent the term “soliton”

KdV 1-soliton KdV 2-soliton
1967: Inverse scattering transform (Gardner, Greene, Kruskal, Miura)
is based on the existence of a

Lax pair L= —07 + ¢
A =497 = 3260, + (9:9)

6tL — [L7 A]
Initial condition L scattering data
¢(z,0) > S(t = 0)
A
¢($ t) inverse scattering l
) <€

Inverse scattering transform method



The scattering problem

The linear Schrodinger equation
Ly(x) = Mp(x) with L=-02+¢

has bound state solutions \; < 0 “solitons”

and scattering states A>0 “radiation”

The nature of the scattering problem does not change as time evolves,
thus solitons are eternal. Moreover, there is an infinite number of
constants of the motion — the problem is integrable.

Long term fate of a localised initial state (finite support)  ¢(z,0)
For ¢(x,t) with t— o

* Solitons will persist, separate
e Radiation will decay to zero amplitude



Examples of integrable soliton equations

 Korteweg — de Vries equation:
0 + (952’gb + 6000 =0

real wave function, bright solitons only

* Nonlinear Schrédinger equation:

i0yu = —02u £ |ul|?u

complex wave function, bright and dark solitons

* Sine Gordon equation:
D2 — 926 + sin() = 0

relativistic covariant wave equation (Lorentz transformation);
real wave function, topological solitons



Theory: Bose-Einstein Condensate (BEC)

* Bose gas in an external potential

o h2 5
i V(1) = [—Q—V 4 Vit (r, 1) +/wT(r OV — ), t)dr] U (r,t)

For BECs we may use the classical Interaction becomes a
or mean field (Hartree) approximation: tunable parameter

Gross-Pitaevskii equation

h2 o
1h w(r t) = —Q—V + Vext(r,t) +

7TCL3

— [ (r, t>|2] (r, 1)
s S-wave scatterlng length

The GP equation is a nonlinear Schr

s GP valid for soliton phenomena®?
Criterium of validity: 1
healing length £ = > d particle distance

length scale for solitons \/8mn|as|




Solitons as stationary solutions of the
nonlinear Schrodinger equation

2
S, 1) = [+ glulPlue, 0

cos(x) sin(x)

g=0 9=0
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bright soliton
dark soliton

sech(x) tanh(x) f

J

For a tutorial-style introduction see Reinhardt 1988



Solitons
in the nonlinear Schrodinger equation (NLS)

Dispersion
L, t) = | u(z,1)
1—u\x, —_ )
ot
Nonlinearity
bright dark solitons
soliton g>0 u(x,t) = ug{Ai + Btanh|ugB(z — Au t)]}ewo
= T
D\VARESEE
LY T TR R I Phase step
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X X From: Kivshar (1998)




Solitons in quantum gases

* Bose-Einstein condensate in quasi-1D trap:
Gross-Pitaevskii equation -> NLS
— Dark solitons with repulsive interactions
— Bright solitons with attractive interactions

e Superfluid Fermi gas in BEC — BCS crossover
— BEC regime -> dark solitons as above (NLS) in quasi 1D

— BCS regime -> Bogoliubov-de Gennes equation with dark
soliton solutions in 1D

— Unitary regime, 3D, strictly 1D -> to be discussed
e Linearly coupled 1D BECs -> coupled 1D GPEs

— Not integrable but features both NLS and sine Gordon
solitions



Josephson vortices in superconductor

Long Josephson juction

Superconductors — Magnetic field:

Insulator ——— O

* Josephson vortex: identified by a soliton in the relative phase

(b)
0(x)

* One guantum of magnetic flux

A. V. Ustinov, Physica D, 123 (1998)



Solitons of the sine Gordon equation

The sine Gordon equation Field potential — cos(¢)

atQQb — ang + sin(¢) =0
- il
corresponds to the energy density ' ' )
w = %(&@)2 — cos(9) v v

vaccum 1 vaccum 2

The sine Gordon kink is a topological soliton.
It connects two vacuua.




Classification of solitons

* Non-topological soliton:
relies on the balance of nonlinearity and dispersion

* Topological soliton:
owes its existence to a multiplicity of ground states that
allow topologically non-trivial field configurations

Topological charge for sine-Gordon:
1
Q = o [Pp(x = 00) — ¢(x = —00)]
70

Associated conserved current:

.1 09 /°° .
= — — d
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Two coupled Bose fields

| h?
zh@twl = — %am@h — ,u% + g!¢1|2¢1 — J¢2
| h?
ihOpy = — ——Opaths — ptha + gltha|* b — Jah

2m

J is tunnel coupling
M is the chemical potential
g>0 interaction between atoms

_—H Y1 + 1|

Could be realised in double ring trap or two linear traps with narrow
barrier (Schmiedmayer experiments).



Field potential for coupled BECs

Field potential for coupled BEC fields

« Relative phase and amplitude yield sine-Gordon equation — a
relativistic field theory!

« Total phase and density yield nonlinear Schrodinger equation —
with dark solitons and phonons.

B Opanchuk, R Polkinghorne, O Fialko, JB, P Drummond, Ann Phys. (Berlin) (2013)



Josephson vortex and dark soliton

. h?
ihOpr = = 5 —Owethy — pip1 + gltn 1 — T
‘ h? 2
1hOypg = — %axx¢2 — pbe + g|¢2| o — J
Dark soliton
o arg¢2 ...... 2Pj
N_N‘ ar g wl N N_cxl r
2 ha e 5 Pi
2z g > &
© ©
\ arg g .
—l ] e ———————iDLITTTTECTEIEPEPEPETRPRPEPEPRPPRIRPIS 0
position position

The stationary solutions were found by Kaurov and Kuklov PRA (2005)
Related:  JB,T Haigh, U Zuelicke PRA 2009
L Wen, H Xiong, B Wu PRA 2010



Josephson vortex vs dark soliton
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Josephson vortex dispersion

Josephson vortices can move

v=0.025 One over the inertial mass for the vortex branch!!!
- e 2
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They are quasiparticles with tunable effective mass

Sophie Shamailov and JB, arXiv:1709.00403
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Breathers and oscillons

Breathers in the sine Gordon equation are not topological, but live forever

Stationary large-amplitude breather Small-amplitude breather

N o= O = N W

5 =U.
L

In the coupled BECs, instead we find oscillons: breather-like excitations
that live a long time
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S-W Su, S-C Gou, I-K Liu, AS Bradley, O Fialko, JB, PRA (2015)



Examples of integrable soliton equations

Korteweg — de Vries equation: water waves
0@ + 8gz’gb + 600,90 =0

Focusing nonlinear Schrodinger equation:
i0yu = —02u — |u|*u

Attractive Bose-Einstein condensates in quasi-1D waveguide
Experiments by Hulet, Salomon, Cornish, Kasevich
Defocusing nonlinear Schrodinger equation:

i0u = —07u + |ul*u

Repulsively interacting Bose-Einstein condensates
Experiments by Sengstock, Phillips, Oberthaler
Sine Gordon equation:

O2¢ — 02¢ + sin(¢) = 0

Realised by linearly coupled Bose-Einstein condensates (Schmiedmayer
experiments?)



