New Zealand INSTITUTE for Advanced Study

Exotic topological states of ultra-cold atomic matter Lecture 1: Topolgical and nontopological solitons

Joachim Brand

The Dodd-Walls Centre for Photonics and Quantum Technology

To be covered: Solitons in quantum gases

- Lecture 1: Solitons and topological solitons
 - solitons in water: the KdV equation, iintegrability
 - solitons of the nonlinear Schrodinger equation
 - solitons of the sine Gordon equation topological solitons
 - Bose Josephson vortices in linearly coupled BECs
- Lecture 2: Semitopological solitons in multiple dimension
 - Solitons as quasiparticles: effective mass
 - solitons in the strongly-interacting Fermi gas
 - snaking instability
 - vortex rings
 - solitonic vortices
- Lecture 3: Quantum solitons and Majorana solitons
 - solitons in strongly-correlated 1D quantum gas
 - solitons with Majorana quasiparticles in fermionic superfluids

Solitons

*

Topologial solitons

So if a soliton is a localised wave, then what is a topological soliton?

Hagfish makes a knot

Credit: Stefan Siebert, Sophia Tintory, Casey Dunn https://vimeo.com/7825337

Topologial solitons

So if a soliton is a localised wave, then what is a topological soliton?

Wikipedia:

"A **topological soliton** or a **topological defect** is a solution of a system of partial differential equations or of a quantum field theory homotopically distinct from the vacuum solution."

Homotopy: a continuous deformation

Solitons appear spontaneously

e.g. when cooling through the Bose-Einstein condensation phase transition

Also: proposal to observe Josephson vortices (topological solitons) by rapidly cooling a double-ring Bose-Einstein condensate.

SW Su, SC Gou, AS Bradley, O Fialko, JB, Phys. Rev. Lett. 110, 215302 (2013)

From linear to nonlinear waves: shallow water

 $\partial_t \phi + c \,\partial_x \phi = 0$ Linear wave equation $\phi(x,t) = A \sin(x - ct)$

Nonlinear waves: wave speed depends on amplitude:

 $\partial_t \phi + \phi \, \partial_x \phi = 0$ Inviscid Burgers equation

Add dispersive (higher order derivative term):

Korteweg – de Vries equation (1895) $\partial_t \phi + \partial_x^3 \phi + 6\phi \,\partial_x \phi = 0$

Soliton solution

$$\phi(x,t) = \frac{1}{2}c\operatorname{sech}^{2}\left[\frac{\sqrt{c}}{2}(x-ct-a)\right]$$

Source: Leon van Dommelen, FSU

Source: Wikipedia

KdV: an integrable soliton equation

1965: Zabusky and Kruskal discover robust collision in numerics, invent the term "soliton"

1967: Inverse scattering transform (Gardner, Greene, Kruskal, Miura) is based on the existence of a

Lax pair
$$L = -\partial_x^2 + \phi$$

 $A = 4\partial_x^3 - 3[2\phi\partial_x + (\partial_x\phi)]$
 $\partial_t L = [L, A]$

Inverse scattering transform method

The scattering problem

The nature of the scattering problem does not change as time evolves, thus solitons are eternal. Moreover, there is an infinite number of constants of the motion – the problem is *integrable*.

Long term fate of a localised initial state (finite support) $\phi(x, 0)$

For $\phi(x,t)$ with $t \to \infty$

- Solitons will persist, separate
- Radiation will decay to zero amplitude

Examples of integrable soliton equations

• Korteweg – de Vries equation:

 $\partial_t \phi + \partial_x^3 \phi + 6\phi \,\partial_x \phi = 0$

real wave function, bright solitons only

• Nonlinear Schrödinger equation:

 $i\partial_t u = -\partial_x^2 u \pm |u|^2 u$

complex wave function, bright and dark solitons

• Sine Gordon equation:

 $\partial_t^2 \phi - \partial_x^2 \phi + \sin(\phi) = 0$

relativistic covariant wave equation (Lorentz transformation); real wave function, topological solitons

Theory: Bose-Einstein Condensate (BEC)

• Bose gas in an external potential

$$i\hbar \frac{\partial}{\partial t} \hat{\Psi}(\boldsymbol{r},t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{ext}}(\boldsymbol{r},t) + \int \hat{\Psi}^{\dagger}(\boldsymbol{r}',t) V(\boldsymbol{r}'-\boldsymbol{r}) \hat{\Psi}(\boldsymbol{r}',t) d\boldsymbol{r}' \right] \hat{\Psi}(\boldsymbol{r},t)$$

For BECs we may use the classical or mean field (Hartree) approximation:

Interaction becomes a tunable parameter

Gross-Pitaevskii equation

$$i\hbar \frac{\partial}{\partial t}\psi(\mathbf{r},t) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V_{\text{ext}}(\mathbf{r},t) + \frac{4\pi a_s}{m}|\psi(\mathbf{r},t)|^2\right]\psi(\mathbf{r},t)$$

as s-wave scattering length

The GP equation is a nonlinear Schrödinger equation

Is GP valid for soliton phenomena?

Criterium of validity: healing length $\xi = \frac{1}{\sqrt{8\pi n |a_s|}} \gg d$ particle distance

Solitons as stationary solutions of the nonlinear Schrödinger equation

Solitons in the nonlinear Schrödinger equation (NLS)

$$i\frac{\partial}{\partial t}u(x,t) = \left[\frac{1}{2}\frac{\partial^2}{\partial x^2} + \frac{g|u|^2}{u(x,t)}\right]$$

Nonlinearity

bright dark solitons soliton $u(x,t) = u_0 \{Ai + B \tanh[u_0 B(x - Au_0 t)]\} e^{iu_0^2 t}$ g > 0g < 01.0 $A^2 + B^2 = 1$ B^2 <u>م</u> 0.5 <u>ح</u> \mathbf{u}_0^2 \mathbf{u}_0^2 Phase step 0 -2 -4 -2 0 0 0 2 4 -4 2 -4 -2 2 $\Delta \phi = 2 \tan^{-1} \left(\frac{A}{B} \right)$ х х х $\pi/2$ BHV $\pi/2$ $-\pi/2$ -4 -2 2 -2 0 х х From: Kivshar (1998)

Solitons in quantum gases

- Bose-Einstein condensate in quasi-1D trap: Gross-Pitaevskii equation -> NLS
 - Dark solitons with repulsive interactions
 - Bright solitons with attractive interactions
- Superfluid Fermi gas in BEC BCS crossover
 - BEC regime -> dark solitons as above (NLS) in quasi 1D
 - BCS regime -> Bogoliubov-de Gennes equation with dark soliton solutions in 1D
 - Unitary regime, 3D, strictly 1D -> to be discussed
- Linearly coupled 1D BECs -> coupled 1D GPEs
 - Not integrable but features both NLS and sine Gordon solitions

Josephson vortices in superconductor

Long Josephson juction

• Josephson vortex: identified by a soliton in the relative phase

• One quantum of magnetic flux

A. V. Ustinov, Physica D, 123 (1998)

Solitons of the sine Gordon equation

The sine Gordon kink is a topological soliton. It connects two vacuua.

Classification of solitons

• Non-topological soliton:

relies on the balance of nonlinearity and dispersion

• Topological soliton:

owes its existence to a multiplicity of ground states that allow topologically non-trivial field configurations

Topological charge for sine-Gordon:

$$Q = \frac{1}{2\pi} \left[\phi(x = \infty) - \phi(x = -\infty) \right]$$

Associated conserved current:

$$j = \frac{1}{2\pi} \frac{\partial \phi}{\partial x} \qquad \qquad Q = \int_{-\infty}^{\infty} j \, dx$$

Two coupled Bose fields

$$i\hbar\partial_t\psi_1 = -\frac{\hbar^2}{2m}\partial_{xx}\psi_1 - \mu\psi_1 + g|\psi_1|^2\psi_1 - J\psi_2$$
$$i\hbar\partial_t\psi_2 = -\frac{\hbar^2}{2m}\partial_{xx}\psi_2 - \mu\psi_2 + g|\psi_2|^2\psi_2 - J\psi_1$$

Could be realised in double ring trap or two linear traps with narrow barrier (Schmiedmayer experiments).

Field potential for coupled BECs

Field potential for coupled BEC fields

- Relative phase and amplitude yield sine-Gordon equation a relativistic field theory!
- Total phase and density yield nonlinear Schrödinger equation with dark solitons and phonons.

B Opanchuk, R Polkinghorne, O Fialko, JB, P Drummond, Ann Phys. (Berlin) (2013)

Josephson vortex and dark soliton

$$i\hbar\partial_t\psi_1 = -\frac{\hbar^2}{2m}\partial_{xx}\psi_1 - \mu\psi_1 + g|\psi_1|^2\psi_1 - J\psi_2$$
$$i\hbar\partial_t\psi_2 = -\frac{\hbar^2}{2m}\partial_{xx}\psi_2 - \mu\psi_2 + g|\psi_2|^2\psi_2 - J\psi_1$$

Josephson vortex

The stationary solutions were found by Kaurov and Kuklov PRA (2005) Related: JB,T Haigh, U Zuelicke PRA 2009 L Wen, H Xiong, B Wu PRA 2010

Josephson vortex vs dark soliton

Josephson vortex dispersion

Josephson vortices can move

They are quasiparticles with tunable effective mass

Sophie Shamailov and JB, arXiv:1709.00403

Breathers and oscillons

• **Breathers** in the sine Gordon equation are not topological, but live forever

 In the coupled BECs, instead we find oscillons: breather-like excitations that live a long time

S-W Su, S-C Gou, I-K Liu, AS Bradley, O Fialko, JB, PRA (2015)

Examples of integrable soliton equations

• Korteweg – de Vries equation: water waves

 $\partial_t \phi + \partial_x^3 \phi + 6\phi \,\partial_x \phi = 0$

• Focusing nonlinear Schrödinger equation:

$$i\partial_t u = -\partial_x^2 u - |u|^2 u$$

Attractive Bose-Einstein condensates in quasi-1D waveguide Experiments by Hulet, Salomon, Cornish, Kasevich

• Defocusing nonlinear Schrödinger equation:

 $i\partial_t u = -\partial_x^2 u + |u|^2 u$

Repulsively interacting Bose-Einstein condensates Experiments by Sengstock, Phillips, Oberthaler

• Sine Gordon equation:

$$\partial_t^2 \phi - \partial_x^2 \phi + \sin(\phi) = 0$$

Realised by linearly coupled Bose-Einstein condensates (Schmiedmayer experiments?)