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Abstract

A series of four lectures given at the Australian National University in December
2011 for the 2nd Asia-Pacific Summer School in Mathematical Physics/22nd Canberra
International Physics Summer School.

1 The Exact Correspondence

While there were many hints and initial steps towards the discovery of the gauge/gravity
duality in for instance [1, 2], the significance of the seminal paper by Maldacena [3] cannot
be understated. In this work Maldacena proposed quite precisely how the bulk theory of IIB
string theory on AdS5 × S5 and the boundary N = 4 SYM theory were really two different
expansion points of the same underlying theory and it was proposed how this basic duality
could be applied to a host of other examples arise in string/M-theory. Now roughly speaking,
the data specifying a given quantum field theory is the spectrum of operators Oi(x) and their
correlators and a proposal for how this data is mapped between the bulk and boundary theory
was given in [4, 5]. Taken together these papers laid out the entire framework of gauge/gravity
duality with enough generality that it could be applied to scenarios far from those initially
considered and the mountain of subsequent work can be considered as essentially checking
the validity of the proposed duality and its consequences. Before moving on to using the
duality to compute some sample correlators, it is worthwhile to state the duality as precisely
as we can.

In general the bulk theory is that of interacting strings. A key insight of Maldacena [3]
was to determine the precise limit of the boundary theory which would correspond to the
low energy or supergravity limit of string theory in the bulk. We have not had time in these
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lectures to describe the ’t Hooft limit of Yang-Mills theory [6] but I believe other lecturers at
this school will have covered this. Suffice it to say that Yang Mills theory in four dimensions
has two particularly useful dimensionless parameters (gYM , Nc), the gauge coupling and the
rank of the gauge group. The insight of ’t Hooft was that in the limit

gYM → 0
Nc → ∞

λ = g2
YMNc << 1

 ′t Hooft limit (1)

the Yang-Mills theory simplifies and admits a perturbative fatgraph expansion. The Malda-
cena limit, where the string theory dual reduces to a supergravity dual is then

gYM → 0
Nc → ∞

λ = g2
YMNc >> 1

 Maldacena limit . (2)

In quantum field theory, the set of all correlators is summarized in terms of a generating
functional W (Ji):

e−W (Ji) = 〈e
∫
d4xJi(x)Oi(x)〉 . (3)

Note that this expression includes sources for renormalizable and non-renormizable operator
deformations. The expression for the correlators is

〈O1(x1) . . .On(xn)〉 =
δ

δJ1(x1)
. . .

δ

δJn(xn)
e−W (Ji)

∣∣
Ji=0

(4)

and in the limit (1) we can compute these correlators in perturbation theory around λ = 0.
To compute these correlators in the limit (2), we can use gauge/gravity duality. From the
set of all correlation functions one can reconstruct W (Ji).

The precise(ish) statement of the duality [5] is

e−Sstring = e−W . (5)

The LHS of this relation requires further explanation. For starters, we have just seen how
the RHS is a function of all the sources Ji(x) and so clearly the LHS must also be a function
of such parameters. Once one provides a map between bulk fields and boundary operators

φi(x, z)
∼↔ Oi(x) , (6)

then the prescription for the LHS of (5) is to extremize the string action as a function of the
AdS-boundary values φi0(x) of the bulk fields. In general this is far too difficult, string theory
on AdS space of arbitrary radius is a notoriously hard problem. However in the supergravity
limit of string theory, this is a much more tractable problem. The action of supergravity can
be worked out to several orders of perturbation theory in a Kaluza-Klein reduction around
AdS5 × S5.

I have put a ∼ above the arrow in (6) because it is quite imprecise. More precise is
something like

φi(x, z)|z=0 = Ji(x) (7)
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but even that is not quite good enough. Recall from lecture 2 that a scalar field in AdS has
two linearly independant solutions

φ(x, z) = eik·xzd/2
[
c1Iλ(|k|z) + c2Kλ(|k|z)

]
. (8)

with

λ =

√
m2 +

d2

4
. (9)

We need to look at the boundary behaviour of these functions

Iλ(|k|z) =
|k|λ

2λΓ(λ+ 1)
zλ +O(zλ+2) , (10)

Kλ(|k|z) =
2λ−1

|k|λΓ(λ)
z−λ +O(zλ+2) . (11)

It is conventional in the literature to define

∆± =
d

2
±
√
m2 +

d2

4
(12)

then we have near the boundary (z = 0)

zd/2Iλ(|k|z) ∼ z∆+ (13)

zd/2Kλ(|k|z) ∼ zd−∆+ . (14)

The basic idea is that one the most divergent mode actually deforms the boundary theory,
thus it should correspond to the source for the dual operator O(x) while the less divergent
mode corresponds to the vev for O(x) (see section III.A of [7] for a lucid summary of these
salient points).

So now we see that the relation (7) is clearly imprecise since φi(x, z) will diverge near
z = 0. The solution to this problem is to renormalize the operator φ(x) in the boundary
theory and (7) becomes

φi(x, ε)
ε→0∼ εd−∆+Ji(x) . (15)

Now since φ(x, z) is dimensionless, Ji has dimension [length]∆+−d and since it couples as∫
ddxJi(x)Oi(x) (16)

we see that Oi(x) has dimension ∆+. This is a very heuristic argument, it would be better to
obtain the strong coupling dimension of a given operator by actually computing a two-point
function from the bulk theory.

2 Computing Two-Point Functions From the Bulk

By now we should know enough about gauge/gravity duality to actually compute some two-
point functions, or equivalently, the dimension of certain (scalar) fields in the Maldacena
limit (2). The action for a free scalar field is

Sφ =
1

2

∫
d5x
√
g
(

(∇φ)2 +m2φ2
)
. (17)
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We would ideally like to isolate a particular scalar field arising from dimensional reduction of
IIB supergravity on S5, and this can indeed be achieved. For our purposes we will treat this
as a “toy” example, we are fixing the overall normalization and a simple quadratic potential.
In fact the dilaton-axion sector of the reduction on S5 is essentially of this form.

We will need the Green’s function for a scalar field on AdS5 which we calculated above
and impose a cut-off at the boundary:

φ(x, z)
∣∣
z=ε

= φ0(x) . (18)

The solution which achieves this is

φε(x, z) =

∫
d4k eik·xφ0(k)

(z
ε

)2 Kλ(|k|z)

Kλ(|k|ε)
. (19)

We now note that evaluating the action on-shell is easier if we integrate by parts

Sφ =
1

2

∫
Σ

d4x
√
g φnµ∂µφ+

1

2

∫
d5x
√
g φ
(
−�φ+m2φ

)
(20)

where nµ is a vector field orthogonal to the boundary Σ of AdS. We then perform the integral
over x

Sφ =

∫
Σ

d4x

∫
d4k1d

4k2e
i(k1+k2)·xφ0(k1)φ0(k2)

z5

(z
ε

)2 Kλ(|k1|z)

Kλ(|k1|ε)
z∂z

[ (z
ε

)2 Kλ(|k2|z)

Kλ(|k2|ε)

]
=

∫
d4k1d

4k2δ(k1 + k2)
φ0(k1)φ0(k2)

z5

(z
ε

)2 Kλ(|k1|z)

Kλ(|k1|ε)
z∂z

[ (z
ε

)2 Kλ(|k2|z)

Kλ(|k2|ε)

]
Expanding the above expression gives

G2(k1, k2) = 〈φ(k1)φ(k2)〉 ∼ δ(k1 + k2)ε2∆+−8k2∆+ log k (21)

The Fourier transform of this requires some care and gives

G2(x1, x2) ∼ 1

(x1 − x2)2∆+
. (22)

The procedure just outlined is quite cumbersome and is not the most convenient method
available. In [5], Witten uses a more convenient form of the Green’s function

K(z, ~x; ~x′) =
z∆+

(z2 + (~x− ~x′)2)∆+
. (23)

A solution to the wave equation with boundary value φ0(x)

φ(x) =

∫
d4x′K(z, ~x; ~x′)φ0(x′) (24)

The two point function is then

G2(x1, x2) =

∫
d5x

K(z, x;x1)z∂zK(z, x;x2)

z5

∣∣∣∣
z=ε

∼ ∆+

(x1 − x2)2∆+
(25)

The normalization of this requires some care and is only important when computing three
point functions.
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3 Higher Point Functions from the Bulk

To compute higher point functions from the bulk we need to expand the bulk action to higher
orders in φ:

Sφ,n =
1

2

∫
d5x
√
g
(

(∇φi)2 +m2φ2
i +

∑
λi1...ikφi1 . . . φik

)
(26)

where we have a set of scalar fields φi.
The equation of motion is now non-linear and the Green’s function cannot be solved

exactly but we proceed by perturbation theory. Suppose we just take a cubic theory of one
scalar field, then

φ(0) =

∫
d4x′K(z, ~x; ~x′)φ0(x′) (27)

φ(1) = λ

∫
d4x′dz′G(z, x; z′, x′)

∫
d4x1d

4x2K(z′, ~x′; ~x1)K(z′, ~x′; ~x2)φ0(x1)φ0(x2) (28)

(29)

where G(z, x; z′, x′) is the bulk-bulk propogator which solves

(�−m2)G(z, x; z′, x′) =
1
√
g
δ(z − z′)δ(~x− ~x′) (30)
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