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Abstract

A series of four lectures given at the Australian National University in December
2011 for the 2nd Asia-Pacific Summer School in Mathematical Physics/22nd Canberra
International Physics Summer School.

1 The Conformal Group

It is quite possible that you are familiar with conformal symmetry from the study of two
dimensional quantum field theory, where conformal symmetry places stringent constraints
on correlation functions. At risk of duplication, we will review conformal symmetry here
since it plays a crucial role in holography.

Perhaps the Poincaré group is familiar from undergraduate study of relativistic quantum
mechanics. This group is generated by Lorentz transformations Mµν and translations Pµ and
technically we say that this is

O(1, 3) nR1,3 (1)

to indicate that O(1, 3) is a normal subgroup. This is the minimal symmetry group of a
relativistic classical field theory but there is a large swath of modern physics which deals
with field theories which possess a larger symmetry group.

A canonical symmetry generator to consider is dilatation:

D : xµ → λxµ , λ ∈ R+ . (2)

For such a symmetry to be present in a given quantum field theory, the spectrum of fields must
be massless since there cannot be any dimensionful parameters. A dimensionful parameter
would set a prefered scale and thus by definition break scale invariance.
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A common technique to enhance the symmetry of a given system is the make a global
symmetry local, this is often refered to as gauging a symmetry. To see this more precisely we
will just present a defintion of the conformal group. It is the group of diffeomorphisms which
leave the metric invariant up to an overall local rescaling:

gµν(x)→ g′µν(x
′) = ω2(x)gµν(x) . (3)

In Minkowski space, it should be clear that the Poincaré group leaves the metric exactly
invariant. The full conformal group has one more generator

K : xµ → xµ + aµx2

1 + 2aµxµ + a2x2
(4)

which goes by the rather unimaginitive moniker special conformal transformation. This is a
fairly unituitive transformation but one can check that

K :
xµ

x2
→ xµ

x2
+ aµ . (5)

For dilations and special conformal transformation we find that

D : ω(x) = λ−1 , (6)

Kµ : ω(x) = (1 + 2aµx
µ + a2x2)−1 . (7)

For reference we include here the full algebra of the conformal group:[
Pρ,Mµν

]
= i

(
ηρµPν − ηρνPµ

)
(8)[

Kρ,Mµν

]
= i

(
ηρµKν − ηρνKµ

)
(9)[

Mµν ,Mρσ

]
= i

(
ηνσMνρ + ηνρMνσ − ηνσMνρ + ηνσMνρ − ηνσMνρ

)
(10)[

D,Mµν

]
= 0 (11)[

D,Kµ

]
= iKµ (12)[

D,Pµ
]

= −iPµ (13)[
Pµ, Kν

]
= 2iMµν − 2iηµνD (14)

2 The Conformal Fields of Conformal Field Theory

Having learnt previously about how the conformal group acts on spacetime, it is necessary
now to understand how the symmetry group acts on the fields of our QFT. The guiding
principle when realizing symmetry groups on a space of physical fields is that the fields must
furnish a unitary representation. When the symmetry group is the conformal group, these
interesting representations are constructed from so-called primary operators Φ(x). These
operators have two properties

• Φ(x) are annihilated by the generator of special conformal transformation Kµ

• Φ(x) are eigenfields of the dilation operator D with eigenvalue −i∆
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To understand these representations one should recall the highest weight representations
of SU(2), familiar from quantum mechanics. In this case, one has three operators (Jz, J+, J−)
and one calls a spin j representation one where a particle can have the following eigenvalues
under Jz:

j, j − 1, . . . , 1− j,−j . (15)

Then of course J± raise and lower the spin by one unit. One key point is that there are only
finitely many eigenstates since the spectrum is bounded above and below, in particular it is
symmetric around spin zero.

Coming back to the conformal group, there are some similiarities and some important
differences. The primary fields have the lowest possible dimension in the representation and
the by unitarity the spectrum is bounded below by

∆ ≥ (d− 2)/2. (16)

It is not bounded above however, which is perfectly fine, QFT does not have a finite spectrum.
If you are familiar with the state-operator correspondence as well as the infinite dimensional
nature of the Hilbert space of states, this should not be a surprise. From (14) one might be
able to discern that if the Lorentz transformation acts trivially (as it does for a realization
on a scalar field) the this commutation relation is of the form

[J+, J−] = 2iJz (17)

and indeed Pµ and Kµ should be thought of as raising and lowering operators and indeed
the entire representation can be generated by acting with Pµ on a primary field. A very
important point is that while for SU(2) the allowed spins are quantized and integral, which
is a result of the reflection symmetry about spin zero, the conformal dimension is neither
quantized or integral. In fact it can depend on the coupling constants in the theory.

So lets work out how symmetries act on scalar fields. As usual for a scalar field we
demand that it is invariant under Poincaré transformations (while of course spinors, vectors
and tensors transform nontrivially) but it need not and in fact should not, be invariant under
dilatations. We demand that for a field Φ(x)

Φ′(x′)
!

=

∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

Φ(x) (18)

= ω(x)∆Φ(x) (19)

where ∣∣∣∣∂x′∂x

∣∣∣∣ = ω(x)−d (20)

is the Jacobian for a given conformal transformation.
To first order in some set of parameters εa we get

Φ′(x′) = Φ(x) + εa
δxµ

δεa
∂µΦ(x) + δΦ(x) +O(ε2). (21)

There is some popular convention

δΦ(x) = −iεaGaΦ(x) (22)
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where Ga is some differential operator realization for the algebra of the symmetry group
acting on fields.

Now to get the idea we consider the momentum operator (which generates translations)

P : xµ → xµ − εµ (23)

and we can easily read off that
Gµ(P ) = i∂µ . (24)

Continuing in this fashion for the full conformal group one finds:[
Pµ,Φ(x)

]
= i∂µΦ(x) , (25)[

Mµν ,Φ(x)
]

= i
(
xµ∂ν − xν∂µ

)
Φ(x) , (26)[

D,Φ(x)
]

= i
(
−∆ + xµ∂µ

)
Φ(x) , (27)[

Kµ,Φ(x)
]

= i
(
x2∂µ − 2xµx

ν∂ν + 2xµ∆
)
Φ(x) . (28)

We see that a primary field is also not invariant under special conformal transformations.

3 Correlation Functions of Conformal Fields

The conformal symmetry severely restricts the functional form of correlation functions of
primary fields as follows. The one point function vanishes except for the identity operator

〈O∆(x)〉 = δ∆,0 . (29)

Indeed, from translation invariance it must be x-independent and from (18) under scale
transformations, it must have dimension zero. One concludes that the only non-vanishing
one point function is for the identity operator. Alternatively one might say that ay non-zero
vev for nono-trivial operator will spontaneously break conformal invariance.

3.1 Two Point Functions

Consider the two point function
〈φ1(x1)φ2(x2)〉 (30)

where φi(xi) is a primary field of dimension ∆i inserted at position xµi . Now demanding that
the transformation (18) holds within quantum correlation functions gives

〈φ′1(x′1)φ′2(x′2)〉 =

∣∣∣∣∂x′1∂x1

∣∣∣∣−∆1/d
∣∣∣∣∂x′2∂x2

∣∣∣∣−∆2/d

〈φ1(x1)φ2(x2)〉 . (31)

In other words, this correlator is a (not necessary regular) function of the relativistic invariant

x12 = |x1 − x2| (32)

which transforms in a prescribed way under dilatation and special conformal transformations.
Under dilatations we thus demand

〈φ1(λx1)φ2(λx2)〉 = λ−∆1−∆2〈φ1(x1)φ2(x2)〉 (33)
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from which we get

〈φ1(x1)φ2(x2)〉 =
C12

|x1 − x2|∆1+∆2
. (34)

This is already quite a simplification. Under special conformal transformation we have

Kµ : xij →
xij

(1 + 2aµx
µ
i + a2x2

i )
1/2(1 + 2aµx

µ
j + a2x2

j)
1/2

(35)

and this in effect block diagonalizes the two-point functions:

〈φ1(x1)φ2(x2)〉 =
δ∆1,∆2

|x1 − x2|∆1
, (36)

where we have also normalized the fields such that the numerical coefficient is one.
Once again, we recall that this does not fix the correlator completely since quite generally,

∆i must be computed in perturbation theory, even for very supersymmetric theories it is not
protected. In many two-dimensional theories with even larger symmetry groups, one can
often compute the spectrum of dimensions exactly.

3.2 Three Point Functions

The functional form of the three point functions is also fixed using the same tools as for the
two point functions. Poincaré invariance under covariance under dilatations restricts a three
point function to the form

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

xα12x
β
23x

γ
31

(37)

with

α + β + γ =
3∑
i=1

∆i . (38)

The special conformal transformations give

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

. (39)

The set of constants Cijk are referred to as the structure constants and their exact value
requires taking into account the field normalization which lead to (36). These structure
constant appear in the operator product expansion but in general the full set of structure
constants involves fields of arbitrary spin, not just scalar fields.

While this is an impressive simplification one should note that for the allegedly simplest
quantum field theory namely N = 4 SYM in four dimensions the computation of the dimen-
sion of single trace primary operators has been has occupied an army of physicists for nearly
a decade (see [1] and lectures at this school). The structure constants are just being seriously
attacked quite recently.
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3.3 Four Point Functions

Much is known about four-point functions in CFT’s, the initial application of conformal
invariance allows for some undetermined functional dependance in terms of the so-called
conformal cross ratios

u =
x12x34

x13x24

, v =
x14x23

x13x24

. (40)

Restricting to four dimensions, there are some very strong results available [2]. We define

u2 = zz, v2 = (1− z)(1− z) (41)

and using the operator product expansion one can write

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
∑
k

Ck
14C

k
34G

12,34
k (x1, x2, x3, x4) (42)

where

G12,34
k (x1, x2, x3, x4) =

1

x∆1+∆2
12 x∆3+∆4

34

(
x24

x14

)∆12
(
x14

x13

)∆34

G
12,34

k (u, v) (43)

and

G
12,34

k (u, v) =

(
−1

2

)l
zz(∆k−l)/2

z − z

[
zl+1

2F1

(
∆k −∆12 + l

2
,
∆k + ∆34 + l

2
,∆k + l, z

)
×

2F1

(
∆k −∆12 − l − 2

2
,
∆k + ∆34 − l − 2

2
,∆k + l − 2, z

)
− (z ↔ z)

]
(44)

One can check using (35) that the factor preceding G
12,34

k (u, v) in (43) has the correct

transformation rule for a four-point function. Then clearly G
12,34

k (u, v) is conformally invari-
ant.

4 Comments

Probably the three most canonical operators in any given QFT are the identity, the stress
tensor and the set of conserved currents arising from global symmetries.

• the identity operator has ∆ = 0

• the stress tensor Tµν has dimension d by dimensional analysis

• conserved currents have dimensiosn d− 1
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